首页> 外文学位 >Poisson random velocity fields: Advection-diffusion properties.
【24h】

Poisson random velocity fields: Advection-diffusion properties.

机译:泊松随机速度场:对流扩散特性。

获取原文
获取原文并翻译 | 示例

摘要

We approach certain problems of statistical fluid mechanics from a kinematic point of view. As an alternative to the customary Gaussian fields of similar stochastic kinematic descriptions, we consider a Poisson velocity field ansatz constructed as a sum of eddies. We compute its spectrum and show that it can exhibit some features of fully developed turbulence à la Kolmogorov. We define a related field with a Poisson initial condition and a more physical evolution. Next, we look at advection-diffusion on these fields. We address the question of long time asymptotics which is related to Central Limit Theorems under weak dependence. With the aid of molecular diffusivity, bounded and toroidal versions of the Poisson field are shown to have homogenization.; Particle trajectories are simulated and the intermediate and long-time scaling behaviour of the mean square displacement is measured. Depending on the density of the eddies and the power law of the energy spectral density, both diffusive and subdiffusive limits are obtained. Based on comparison with real float data, a homogeneous model for the large scales of the ocean surface is proposed.
机译:我们从运动学的角度处理统计流体力学的某些问题。作为类似的随机运动学描述的常规高斯场的替代方案,我们考虑将Poisson速度场 ansatz 构造为涡流之和。我们计算了它的频谱,并表明它可以展现出完全发达的àla Kolmogorov湍流的某些特征。我们定义一个具有Poisson初始条件和更物理演化的相关字段。接下来,我们看一下这些领域的平流扩散。我们解决了与弱依赖下的中心极限定理有关的长时间渐近性问题。借助于分子扩散性,泊松场的有界和环形变型显示出均质化。模拟了粒子轨迹,并测量了均方位移的中间和长期缩放行为。根据涡流的密度和能谱密度的幂律,可以同时获得扩散和亚扩散极限。在与实际浮标数据进行比较的基础上,提出了大尺度海面均匀模型。

著录项

  • 作者

    Yildirim, Husnu Elcin.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Physics General.; Mathematics.; Engineering Marine and Ocean.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;数学;海洋工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号