首页> 外文学位 >Characterization and modeling of the charge distribution in silicon/silicon-germanium/silicon P-channel MOSFETS.
【24h】

Characterization and modeling of the charge distribution in silicon/silicon-germanium/silicon P-channel MOSFETS.

机译:硅/硅锗/硅P沟道MOSFET中电荷分布的表征和建模。

获取原文
获取原文并翻译 | 示例

摘要

Silicon-based semiconductor devices have dominated the field of microelectronics for the last thirty years. Metal-oxide semiconductor field effect transistors (MOSFETs) are the predominant silicon-based device structure that comprise the majority of today's logic and memory chips. Silicon-based heterojunction devices have only recently been made possible with the introduction of silicon-germanium (SiGe) films grown on silicon substrates. With the advent of advanced processes such as molecular beam epitaxy (MBE), Si-based Si1-x Gex heterostructures are a reality. These Si-based heterostructures offer both increased performance and a greatly enhanced range of possible device configurations, coupled with the maturity of silicon processing.; One of the most interesting applications of SiGe heterostructures is incorporating a Si1-x Gex layer in the channel of a p-channel MOSFET. In order to fully optimize such a structure, the charge distribution in the Si1-x Gex channel, as well as the Si-surface channel, must be well characterized. To achieve this level of understanding, a fully self-consistent coupled solution of the Schrodinger and Poisson equations applied to the Si/ Si1-x Gex/Si p-channel MOSFET was written and validated. This quantum mechanically-based level of understanding is required due to the quantum nature of the Si/ Si1-x Gex/Si system. This work demonstrates the quantum nature of such a structure and reveals the limitation of the Poisson-only classical solution.; The main focus of this work is the simulation of the Si/ Si1-x Gex/Si p-channel MOSFET as a function of Ge mole fraction (x) as well as the critical physical parameters such as the Si1-x Gex channel thickness, Si-surface channel thickness and gate bias. Through extensive simulation, the optimal physical design features of such a device are arrived at. Two-dimensional simulation results demonstrate the performance advantage of such device structures compared to Si-only MOSFETs. In order to validate the simulations, Si/ Si1-x Gex/Si MOS capacitor structures are fabricated via MBE and characterized by means of capacitance-voltage (C-V) measurements and Fourier Transform Infrared (FTIR) spectroscopy measurements. The C-V measurements are made at room temperature and reveal the distribution of charge in both the Si1-x Gex well and the Si-surface well as a function of gate bias and Ge mole fraction (x). The FTIR spectra reveal the transition energies of carriers in the Si1-x Gex quantum well and are also calibrated to lineshape calculations that describe the transition peaks resulting from the wave function solutions of the Schrodinger and Poisson equations.
机译:在过去的三十年中,基于硅的半导体器件一直占据着微电子领域的主导地位。金属氧化物半导体场效应晶体管(MOSFET)是主要的基于硅的器件结构,包括当今的大多数逻辑和存储芯片。基于硅的异质结器件直到最近才随着在硅衬底上生长的硅锗(SiGe)膜的引入而成为可能。随着诸如分子束外延(MBE)之类的先进工艺的出现,基于Si的Si1-x Gex异质结构成为现实。这些基于硅的异质结构既提高了性能,又大大提高了可能的器件配置范围,同时还具有硅加工的成熟性。 SiGe异质结构最有趣的应用之一是在p沟道MOSFET的沟道中加入Si1-x Gex层。为了充分优化这种结构,必须很好地表征Si1-x Gex通道以及Si表面通道中的电荷分布。为了达到这种理解水平,编写并验证了应用于Si / Si1-x Gex / Si p沟道MOSFET的Schrodinger和Poisson方程的完全自洽耦合解。由于Si / Si1-x Gex / Si系统的量子性质,需要基于量子力学的理解水平。这项工作证明了这种结构的量子性质,并揭示了仅泊松经典解的局限性。这项工作的主要重点是模拟Si / Si1-x Gex / Si p沟道MOSFET与Ge摩尔分数(x)以及Si1-x Gex沟道厚度等关键物理参数的关系,硅表面沟道厚度和栅极偏置。通过广泛的仿真,可以得出这种设备的最佳物理设计特征。二维仿真结果表明,与纯硅MOSFET相比,这种器件结构具有性能优势。为了验证仿真,通过MBE制造了Si / Si1-x Gex / Si MOS电容器结构,并通过电容-电压(C-V)测量和傅立叶变换红外(FTIR)光谱测量来表征。 C-V测量是在室温下进行的,揭示了Si1-x Gex阱和Si表面阱中电荷的分布与栅极偏置和Ge摩尔分数(x)的关系。 FTIR光谱揭示了Si1-x Gex量子阱中载流子的跃迁能,并且也已针对线形计算进行了校准,以描述由Schrodinger和Poisson方程的波函数解产生的跃迁峰。

著录项

  • 作者

    Hargrove, Michael John.;

  • 作者单位

    Dartmouth College.;

  • 授予单位 Dartmouth College.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号