首页> 外文学位 >On the application of the generalized Kramers-Kroenig dispersion relations to ultrasonic propagation.
【24h】

On the application of the generalized Kramers-Kroenig dispersion relations to ultrasonic propagation.

机译:关于广义Kramers-Kroenig色散关系在超声传播中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The broad theme of the dissertation is the application of the generalized Kramers-Kronig dispersion relations to ultrasonic propagation. We develop the Kramers-Kronig dispersion relations in the sense of tempered distributions as well as the conventional point function sense. Non-local and nearly-local forms to the Kramers-Kronig dispersion relations are derived for the prediction of dispersion in media with attenuation obeying an arbitrary frequency power law. Furthermore, a time-domain representation of the generalized Kramers-Kronig dispersion relations is developed and compared with a time-causal theory of ultrasonic propagation.;The first aspect of ultrasonic propagation that we investigate is the intimate relation between the ultrasonic attenuation coefficient and phase velocity. Recently there have been concerns expressed regarding the validity of the Kramers-Kronig dispersion relations to media with attenuation obeying a frequency power law. We demonstrate, however, that ultrasonic measurements of systems with attenuation obeying a frequency power are causally consistent. Consequently, valid Kramers-Kronig relations are available. Theoretical predictions for the frequency dependence of attenuation and phase velocity compare favorably to experimental measurements for a series of liquid specimens over a range of temperatures and acoustic pressures.;The second aspect of ultrasonic measurements we investigate is the phenomenon of phase cancellation at the face of a phase-sensitive receiver which is present in measurements of phase-aberrating media. The excess loss due to phase cancellation is well-known, and has long been of interest. What has not been explicitly investigated is the possibility that there exists a phase velocity shift corresponding to this excess loss. In a novel proposal, we relate the excess loss due to phase cancellation to a phase velocity shift via a nearly-local form of the Kramers-Kronig dispersion relations. Furthermore, we provide a measure of the artifact present in a phase velocity measurement using phase-sensitive and phase-insensitive detection techniques. We demonstrate the technique on measurements of textile woven composites using a two-dimensional pseudo-array and a one-dimensional array.
机译:论文的广泛主题是广义Kramers-Kronig色散关系在超声传播中的应用。我们在缓和分布的意义上以及常规的点函数意义上发展了Kramers-Kronig色散关系。推导了Kramers-Kronig色散关系的非局部和近局部形式,以预测介质中的色散并遵循任意频率幂定律进行衰减。此外,还建立了广义Kramers-Kronig色散关系的时域表示,并将其与超声传播的时因理论进行了比较。;我们研究的超声传播的第一个方面是超声衰减系数与相位之间的密切关系。速度。最近,人们对克拉默斯-克罗尼格色散关系对于服从衰减的介质服从频率功率定律的有效性表示担忧。但是,我们证明了对衰减服从频率功率的系统进行超声测量是因果一致的。因此,有效的Kramers-Kronig关系可用。对于一系列温度和声压范围内的液体样品,衰减和相速度的频率依赖性的理论预测可与实验测量相比较。;我们研究的超声测量的第二个方面是相变现象。在相差媒体的测量中存在的相敏接收器。众所周知,由于相位抵消而造成的额外损失一直以来引起人们的关注。尚未明确研究的是存在对应于该过度损耗的相速度偏移的可能性。在一个新颖的建议中,我们将由于相位抵消而引起的额外损失与通过Kramers-Kronig色散关系的近局部形式的相速度偏移联系起来。此外,我们提供了一种使用相敏和相敏检测技术对相速测量中存在的伪影进行测量的方法。我们演示了使用二维伪阵列和一维阵列的纺织机织复合材料测量技术。

著录项

  • 作者

    Waters, Kendall Rand.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 363 p.
  • 总页数 363
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号