首页> 外文学位 >Dynamics and Control of Inertially Actuated Maneuvers and Locomotion of Robotic Systems.
【24h】

Dynamics and Control of Inertially Actuated Maneuvers and Locomotion of Robotic Systems.

机译:惯性操纵的动力学和控制以及机器人系统的运动。

获取原文
获取原文并翻译 | 示例

摘要

Inertially actuated robots belong to a class of systems that use transfer of momentum to progress in space and time. This momentum is usually generated by spinning masses, disks, or wheels. Despite the simple actuation mechanism, these systems are usually difficult to analyze since their equations of motion involve many nonlinear terms. In addition, inertially actuated systems are under-actuated systems dealing with singularities in mapping between joint and Cartesian spaces. Therefore, nonlinear control design approaches fail in directly controlling the displacements of such systems. Hence, for generating locomotion and maneuvers indirect control alternatives should be considered.;Recent research studies in the System Laboratory at SMU established that a wide range of inertially actuated locomotion systems can be generated. This dissertation is devoted to studying the dynamics and control of inertially actuated robotic systems. Three different robots are presented; Pivot Walker Robot, Bouncing Robot, and Wheeled Baton Robot. The work done in this thesis is significant since, to the best of our knowledge, no previous work that addresses the use inertial actuation in generating maneuvers and locomotion of mobile robots has been conducted.;First, the Pivot Walker robot is studied. The Pivot Walker robot is a three-dimensional inertially actuated robot that is equipped with two independently spinning masses. The research objective is to develop an control scheme to steer the robot on a given desired path in the horizontal plane. This work presents a mathematical framework for accessibility and controllability assessment of the general nonlinear systems. The study establishes the critical role of the surface friction plays in generating locomotion. Also, a non-singular control alternative is proposed based on angular progression, which is called "pivot walking". The corresponding locomotion is composed on successive pivoted steps that enables the robot to follow a desired path in the horizontal plane. In this regard, a Trajectory Generation Algorithm is developed to convert the desired path to a set of locomotion parameters in order to steer the robot along the trajectory. Finally, a prototype is built to experimentally verify the theoretical concepts. The experimental prototype implements a gravitational pivot switching mechanism to switch the pivot joint position as required by the pivot walking locomotion.;Following the successful inertially actuated locomotion in the horizontal plane, an inertially actuated jumper robot is studied. The Bouncing Robot is an inertially actuated mass-spring system in the vertical plane. The robot is composed of a main mass, spring and two spinners connected to the main mass. The research objective is to find a control scheme leading to a periodic jump of the main mass. In this regard, a nonlinear adaptive controller is developed to drive the system toward a periodic orbit in the state space. Furthermore, it is shown that the control successfully steers the system's trajectory to an asymptotically stable limit cycle. Methods of Poincare Mapping and Floquet Basic Theory are used for verification of the existence and stability of the corresponding limit cycles. The work studies the effect of control and system parameters changes of limit cycle and its stability. Finally, an experimental prototype is built to verify the practical utility of the presented theoretical methods and concepts.;In the third work, the combination of wheeled transportation and inertial actuation is studied. The Wheeled Baton is an inertially actuated wheeled system in the vertical plane. The main advantage of this system is not that it can only function as a simple wheeled vehicle, but it can also operate in many other dynamic modes. The wheels of the vehicle can be used to produce inertial effects that enables the robot to perform high mobility maneuvers and aerial acrobatics. This system has also the unique ability to perform locomotive and non-locomotive tasks on very low friction surfaces. In this regard, different modes of motion of the system are identified. Also, the actuation torque schedules are defined analytically in order to provide different modes of transition. Several numerical simulation cases are conducted to verify the validity of the proposed ideas and concepts. They show that the robot can perform different locomotions and maneuvers, which are not impossible for wheeled transportation.;All in all, these works show that the inertially actuation is successful in generating the robotic locomotion and maneuvers. In addition, it is shown that the inertial actuation needs some sort of external forces, e.g. friction force, spring force, etc, to accomplish progression in space and time.
机译:惯性驱动机器人属于一类系统,该系统使用动量传递来在空间和时间上前进。这种动量通常是由旋转质量,圆盘或车轮产生的。尽管有简单的致动机制,但由于这些系统的运动方程涉及许多非线性项,因此通常很难对其进行分析。另外,惯性驱动系统是欠驱动系统,处理关节空间和笛卡尔空间之间的映射中的奇点。因此,非线性控制设计方法不能直接控制这种系统的位移。因此,为了产生运动和操纵,应该考虑使用间接控制方法。SMU系统实验室的最新研究表明,可以产生各种惯性驱动的运动系统。本文致力于研究惯性驱动机器人系统的动力学和控制。提出了三种不同的机器人。枢轴沃克机器人,弹跳机器人和轮式指挥棒机器人。本论文中所做的工作意义重大,因为据我们所知,之前尚未进行过涉及惯性致动以产生移动机器人的动作和运动的工作。首先,对Pivot Walker机器人进行了研究。 Pivot Walker机器人是三维惯性驱动的机器人,配有两个独立旋转的质量。研究目标是开发一种控制方案,以在水平方向上的给定所需路径上操纵机器人。这项工作为通用非线性系统的可访问性和可控性评估提供了一个数学框架。该研究确定了表面摩擦在产生运动中的关键作用。而且,基于角行进提出了非奇异控制的替代方案,称为“枢轴行走”。相应的运动由连续的枢转步骤组成,这些步骤使机器人能够在水平面中遵循所需的路径。在这方面,开发了轨迹生成算法,以将所需路径转换为一组运动参数,以使机器人沿着轨迹进行操纵。最后,建立了一个原型以实验验证理论概念。实验样机实现了重力枢轴切换机构,以根据枢轴行走运动的需要来切换枢轴关节的位置。在成功完成惯性驱动水平面运动之后,研究了一种惯性驱动跨接机器人。弹跳机器人是在垂直平面上的惯性驱动质量弹簧系统。该机器人由一个主体,一个弹簧和两个与主体相连的旋转器组成。研究目标是找到导致主质量周期性跳跃的控制方案。在这方面,开发了非线性自适应控制器以将系统驱动到状态空间中的周期性轨道。此外,表明控制系统成功地将系统的轨迹转向了渐近稳定的极限环。使用庞加莱映射和Floquet基本理论的方法来验证相应极限环的存在性和稳定性。这项工作研究极限环的控制和系统参数变化的影响及其稳定性。最后,建立了一个实验原型,以验证所提出的理论方法和概念的实用性。在第三项工作中,研究了轮式运输和惯性驱动的结合。轮式警棍是在垂直平面上的惯性驱动式轮式系统。该系统的主要优点不仅在于它不仅可以充当简单的轮式车辆,而且还可以在许多其他动态模式下运行。车辆的车轮可用于产生惯性效果,使机器人能够执行高机动性和空中杂技表演。该系统还具有在非常低的摩擦表面上执行机车和非机车任务的独特能力。在这方面,识别出系统的不同运动模式。同样,致动扭矩时间表被解析地定义以便提供不同的过渡模式。进行了几个数值模拟案例,以验证所提出思想和概念的有效性。他们表明机器人可以执行不同的运动和操纵,这对于轮式运输来说并非不可能。总而言之,这些工作表明,惯性致动能够成功地产生机器人的运动和操纵。另外,还显示出惯性致动需要某种外力,例如外力。摩擦力,弹簧力等,以实现时空的渐进。

著录项

  • 作者

    Kashki, Mohammad.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Mechanical engineering.;Robotics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号