首页> 外文学位 >Stochastically stable states for perturbed repeated play of coordination games.
【24h】

Stochastically stable states for perturbed repeated play of coordination games.

机译:随机稳定状态,干扰协调游戏的反复进行。

获取原文
获取原文并翻译 | 示例

摘要

Perturbed repeated play of a two-player two-move coordination game is modeled as an irreducible Markov process on a set of history states describing the most recent m stages of play. At every stage, each player draws a sample from the history state to forecast his opponent's behavior and either moves to maximize his single-stage expected payoff or commits an error. As the error rate approaches zero the stationary distributions converge to a stationary distribution for the unperturbed process. Stochastically stable states, which comprise the support of the limiting distribution, are identified by finding minimum-weight spanning trees of a weighted directed graph on the set of recurrent classes for the unperturbed process. When the sample size equals the memory length m, cycles may be present in the unperturbed process. Necessary and sufficient conditions for the existence of stochastically stable cycle states are provided. The stochastically stable states are identified, for sufficiently large sample sizes and memory lengths, as those states representing repeated play of a risk-dominant Nash equilibrium. Finally, five coordination conditions are introduced to characterize N-player coordination games.
机译:两人两步式协调游戏的扰动重复游戏被建模为描述一组最近m个游戏阶段的历史状态下的不可约马尔可夫过程。在每个阶段,每个玩家都从历史状态中抽取一个样本来预测对手的行为,并采取行动以最大化其单阶段预期收益或犯错。当错误率接近零时,平稳分布收敛为平稳过程的平稳分布。通过在无扰动过程的递归类集上找到加权有向图的最小权重生成树,可以确定包含极限分布的随机稳定状态。当样本大小等于内存长度 m 时,可能会在无干扰的过程中出现循环。为存在随机稳定的循环状态提供了必要和充分的条件。对于足够大的样本量和记忆长度,应确定随机稳定状态,因为这些状态代表着风险主导的纳什均衡的反复发挥。最后,引入五个协调条件来表征 N 玩家的协调游戏。

著录项

  • 作者

    Anderson, Mark Daniel.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mathematics.; Economics Theory.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;经济学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号