首页> 外文学位 >High precision plasma etch for pattern transfer: Towards fluorocarbon based atomic layer etching
【24h】

High precision plasma etch for pattern transfer: Towards fluorocarbon based atomic layer etching

机译:用于图案转移的高精度等离子刻蚀:基于碳氟化合物的原子层刻蚀

获取原文
获取原文并翻译 | 示例

摘要

A basic requirement of a plasma etching process is fidelity of the patterned organic materials. In photolithography, a He plasma pretreatment (PPT) based on high ultraviolet and vacuum ultraviolet (UV/VUV) exposure was shown to be successful for roughness reduction of 193nm photoresist (PR). Typical multilayer masks consist of many other organic masking materials in addition to 193nm PR. These materials vary significantly in UV/VUV sensitivity and show, therefore, a different response to the He PPT. A delamination of the nanometer-thin, ion-induced dense amorphous carbon (DAC) layer was observed. Extensive He PPT exposure produces volatile species through UV/VUV induced scissioning. These species are trapped underneath the DAC layer in a subsequent plasma etch (PE), causing a loss of adhesion.;Next to stabilizing organic materials, the major goals of this work included to establish and evaluate a cyclic fluorocarbon (FC) based approach for atomic layer etching (ALE) of SiO2 and Si; to characterize the mechanisms involved; and to evaluate the impact of processing parameters.;Periodic, short precursor injections allow precise deposition of thin FC films. These films limit the amount of available chemical etchant during subsequent low energy, plasma-based Ar+ ion bombardment, resulting in strongly time-dependent etch rates. In situ ellipsometry showcased the self-limited etching. X-ray photoelectron spectroscopy (XPS) confirms FC film deposition and mixing with the substrate. The cyclic ALE approach is also able to precisely etch Si substrates. A reduced time-dependent etching is seen for Si, likely based on a lower physical sputtering energy threshold. A fluorinated, oxidized surface layer is present during ALE of Si and greatly influences the etch behavior. A reaction of the precursor with the fluorinated substrate upon precursor injection was observed and characterized. The cyclic ALE approach is transferred to a manufacturing scale reactor at IBM Research. Ensuring the transferability to industrial device patterning is crucial for the application of ALE. In addition to device patterning, the cyclic ALE process is employed for oxide removal from Si and SiGe surfaces with the goal of minimal substrate damage and surface residues. The ALE process developed for SiO2 and Si etching did not remove native oxide at the level required. Optimizing the process enabled strong O removal from the surface. Subsequent 90% H2/Ar plasma allow for removal of C and F residues.
机译:等离子体蚀刻工艺的基本要求是图案化的有机材料的保真度。在光刻中,基于高紫外线和真空紫外线(UV / VUV)曝光的He等离子体预处理(PPT)已成功地用于降低193nm光刻胶(PR)的粗糙度。典型的多层掩模除了193nm PR外还包括许多其他有机掩模材料。这些材料对UV / VUV的敏感性差异很大,因此对He PPT表现出不同的响应。观察到纳米薄的离子诱导致密无定形碳(DAC)层的分层。 He PPT大量暴露会通过UV / VUV诱导的分裂产生挥发性物质。这些物质在随后的等离子蚀刻(PE)中被困在DAC层下面,从而导致附着力损失。除了稳定有机材料之外,这项工作的主要目标还包括建立和评估基于环状碳氟化合物(FC)的方法。 SiO2和Si的原子层蚀刻(ALE);表征涉及的机制; ;周期性的短前体注射可以精确沉积FC薄膜。这些膜限制了随后的低能量,基于等离子体的Ar +离子轰击过程中可利用的化学蚀刻剂的数量,从而导致蚀刻时间与时间密切相关。原位椭偏显示了自限腐蚀。 X射线光电子能谱(XPS)证实了FC膜的沉积以及与基材的混合。循环ALE方法还能够精确地蚀刻Si衬底。对于Si的时间依赖性蚀刻减少了,可能是由于较低的物理溅射能量阈值所致。硅的ALE过程中会存在氟化的氧化表面层,并且会严重影响蚀刻行为。观察并表征了前驱物注入时前驱物与氟化底物的反应。循环ALE方法已转移到IBM Research的制造规模反应器。确保向工业设备图案的转移能力对于ALE的应用至关重要。除了图案化器件外,循环ALE工艺还用于从Si和SiGe表面去除氧化物,目的是将衬底损坏和表面残留物降至最低。开发用于SiO2和Si蚀刻的ALE工艺不能去除所需水平的天然氧化物。优化工艺可以从表面去除大量的O。随后的90%H2 / Ar等离子体可去除C和F残留物。

著录项

  • 作者

    Metzler, Dominik.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Plasma physics.;Engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号