首页> 外文学位 >Structural and mechanochemical microtubule-associated proteins in plant cell function.
【24h】

Structural and mechanochemical microtubule-associated proteins in plant cell function.

机译:植物细胞功能中与结构和机械化学相关的微管相关蛋白。

获取原文
获取原文并翻译 | 示例

摘要

Plant cells use the microtubule cytoskeleton to create axes of cellular expansion and division via the formation of a variety of microtubule arrays, including the interphase cortical array, pre-prophase band, phragmoplast, and spindle apparatus. The formation of these arrays is influenced by the biochemical and structural properties of microtubules; comprised mainly of α- and β-tubulin heterodimers, microtubules undergo stages of rapid shortening and slow elongation. This innate dynamic character, termed dynamic instability, allows microtubules to rapidly appear, disappear, and linger for various periods of time.; A group of auxiliary proteins, termed microtubule-associated proteins (MAPS), regulate microtubule dynamicity and organization. MAN can be divided into two classes—structural MAPs and mechanochemical MAPs. Structural MAPs play a role in microtubule morphology and assembly by affecting dynamic instability, while mechanochemical MAPs move along the microtubule and are required for intracellular transport and microtubule organization.; The work presented here has provided evidence that a MAP/microtubule interaction is necessary for stomatal opening. Stomata are found mainly on leaves and consist of a pair of guard cells that regulate gas exchange by opening and closing. Using different classes of microtubule inhibitors, we present data that is consistent with a model, whereby a MAP/microtubule interaction occurs in the early signaling events of stomatal opening.; I have also investigated the function of a putative mechanochemical MAP, ATK1, in mitosis and meiosis. This protein is predicted to be a kinesin based upon homology to known kinesins, and previous studies suggest that it functions in cell division. Here, I have confirmed this hypothesis by showing that ATK1 functions in spindle assembly during meiosis and mitosis. Furthermore, I have expressed the ATK1 protein and used it for in vitro assays. This biochemical data shows that ATK1 is a minus-end directed kinesin that moves non-processively along the microtubule. Overall, the experiments with ATK1 have provided insight into the mechanisms that plant cells use to assemble and maintain meiotic and mitotic spindles.
机译:植物细胞利用微管细胞骨架通过形成各种微管阵列来形成细胞扩张和分裂的轴,包括相间皮层阵列,前相前带,膜生质和纺锤体。这些阵列的形成受微管的生化和结构特性影响。微管主要由α-和β-微管蛋白异二聚体组成,经历了快速缩短和缓慢延长的阶段。这种固有的动态特性,称为动态不稳定性,可使微管在不同的时间段快速出现,消失和徘徊。一组称为微管相关蛋白(MAPS)的辅助蛋白调节微管的动态性和组织。 MAN可分为两类:结构MAP和机械化学MAP。结构性MAP通过影响动态不稳定性而在微管形态和组装中起作用,而机械化学MAP沿着微管移动,并且是细胞内运输和微管组织所必需的。这里介绍的工作提供了证据,表明气孔开放需要MAP /微管相互作用。气孔主要存在于叶片上,由一对通过打开和关闭来调节气体交换的守卫室组成。使用不同种类的微管抑制剂,我们提供与模型一致的数据,其中MAP /微管相互作用发生在气孔开放的早期信号事件中。我还研究了推定的机械化学MAP,ATK1在有丝分裂和减数分裂中的功能。基于与已知驱动蛋白的同源性,该蛋白被预测为驱动蛋白,并且先前的研究表明其在细胞分裂中起作用。在这里,我通过显示ATK1在减数分裂和有丝分裂过程中在纺锤体装配中的作用证实了这一假设。此外,我已经表达了ATK1蛋白并将其用于体外分析。该生化数据表明,ATK1是负端驱动型驱动蛋白,可沿微管非加工性移动。总体而言,使用ATK1进行的实验已经深入了解了植物细胞用于组装和维持减数分裂和有丝分裂纺锤体的机制。

著录项

  • 作者

    Marcus, Adam I.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biology Cell.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.31
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号