首页> 外文学位 >Projective modular representation theory of finite groups.
【24h】

Projective modular representation theory of finite groups.

机译:有限群的射影模块化表示理论。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the author introduces the fundamental concept of projective Brauer characters for the first time and establishes projective Brauer theory or projective modular representation theory as a natural generalization for Brauer theory or modular representation theory of finite groups.;In Chapter 1, the author summarizes some basic results on projective representation theory of finite groups, with the aim of applying them in our new theory. To facilitate the understanding of the reader, the author also gives the necessary explanations. Except for three observations, all results in the first chapter are directly selected from the major reference [K1].;In Chapter 2, the author defines and studies projective Brauer characters as the starting point of our new theory. The crucial point is to use a pair of standard cocycles of p'-th roots of unity, in the respective base fields of the traditional p-modular system. They result in two sets of irreducible alpha-characters: alpha- Irr(G) and alpha-IBr( G). The author proves that irreducible Brauer alpha-characters are also C -linear independent on their domain G♭ , the alpha-regular part of p' -elements of G. The author also defines and studies alpha-decomposition matrix and Cartan alpha-matrix associated to irreducible Frobenius and Brauer alpha-characters.;In Chapter 3, the author defines and studies alpha-blocks of the above defined irreducible alpha-characters via central characters induced from projective irreducible characters. Then author derives block idempotents from primitive idempotents associated to irreducible Frobenius alpha-characters. Finally the author studies the properties of the associated block ideals.;In Chapter 4, the author first studies defect groups of alpha-regular classes and defect groups of alpha-blocks, then establishes the min-max theorem as a basic tool in this approach. Next the author defines Brauer homomorphisms between certain twisted group algebras. After a series of technical lemmas, the author proves the first main theorem as a major result of the thesis.
机译:本文首次介绍了射影布劳尔特征的基本概念,并建立了射影布劳尔理论或射影模块表示理论作为有限群布劳尔理论或模块表示理论的自然概括。总结了有限群投影表示理论的一些基本结果,旨在将其应用到我们的新理论中。为了便于读者理解,作者还给出了必要的解释。除三个观察结果外,第一章的所有结果均直接选自主要参考文献[K1]。在第二章中,作者定义并研究了射影的布劳尔特征作为我们新理论的出发点。关键点是在传统p模块化系统的各个基本字段中使用一对第p个单位根的标准同周期。它们导致了两组不可约的alpha字符:alpha-Irr(G)和alpha-IBr(G)。作者证明了不可约的Brauerα字符也是C线性的,与它们的域G&flat有关;作者,还定义和研究了与不可约Frobenius和Brauerα-字符相关的α分解矩阵和Cartanα-矩阵。在第3章中,作者定义并研究了alpha。通过从投影不可约性字符中诱发出的中心字符,上述定义的不可约性α-字符的块。然后,作者从与不可约Frobenius alpha字符相关的原始幂等派生出块幂等。最后,作者研究了相关联的嵌段理想的性质。在第四章​​中,作者首先研究了α-正则类的缺陷组和α-嵌段的缺陷组,然后建立了最小-最大定理作为这种方法的基本工具。 。接下来,作者定义了某些扭曲群代数之间的Brauer同态。经过一系列的技术引理,作者证明了第一个主定理是论文的主要成果。

著录项

  • 作者

    Shen, Minghui.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号