首页> 外文学位 >Development of miniature climbing robots: Modeling, control and motion planning.
【24h】

Development of miniature climbing robots: Modeling, control and motion planning.

机译:微型攀爬机器人的开发:建模,控制和运动计划。

获取原文
获取原文并翻译 | 示例

摘要

An increasing interest in the development of special climbing robots has been witnessed in the last decade. Cleaning high-rise buildings, spray painting and sand blasting of gas tanks, inspecting and maintaining nuclear facilities, assisting fire fighting and rescue operations, remote monitoring of hazardous environment, etc.—all of those practical problems have an immediate need of automation. Climbing robots, with their ability to adhere to wall surfaces and move around carrying appropriate sensors or tools, are the best candidates for these kinds of jobs. The special characteristics and capabilities of climbing robots would not only allow them to replace human workers in these dangerous duties but also eliminate costly erection of scaffolding.; This dissertation describes the development of miniature bipedal climbing robots, with an emphasis on the CRAWLER robot. This robot is the smallest such robot to date, able to climb walls, walk on ceilings, travel through pipes, and transit between two inclined surfaces. Two active suction feet, where pump motors vacuum air out of suction cups, are used to support the robot on surfaces. The robot adopts the bipedal structure and an under-actuated mechanism to provide the robot with versatile mobility and multiple locomotion modes. The under-actuated mechanism reduces the number of motors required and thereby the robot size, weight, and power consumption, but it imposes challenges on robot control and motion planning.; The robot kinematic model and dynamic model are derived. The analysis of the dynamic model reveals that the robot link gravity is a dominant term in robot dynamic effects. A joint level PD (proportional + derivative) control plus feedforward gravity compensation method is proposed. This method outperforms the conventional PD control method because it not only achieves the joint level control but also compensates for the gravity effects which depend on the configuration of all the robot links. A DSP-based embedded control system is designed and installed on-board to control the robot. By using the DSP (digital signal processor) chip, the number of electrical components is minimized and the control system is self-contained.; In motion planning analysis, a hybrid configuration space concept is proposed which incorporates the continuous configuration space with the discrete motion status space i.e., standing foot, motion mode). The hybrid configuration space is an effective tool to analyze the motion planning of the climbing robot since the robot motion is uniquely determined in the hybrid configuration space framework. Based on motion pattern analysis, a motion planning method is developed that consists of a global planner and a local planner. The global planner generates a possible path by simplifying the robot as a rectangular rigid object with no kinematic constraints. By using an approach called trapezoidal decomposition and a searching algorithm known as A*, it is easy for the global planner to smooth the possible path and allow the robot to move effectively in translation mode. The possible path describes the global motion of the robot and minimizes the turns. The purpose of the local planner is to generate a feasible motion sequence around the turning point by considering the robot constraints. A cost function is defined based on the motion status information and a number of heuristics to help the search of an optimal motion sequence. This approach using global and local levels of refinement reduces the overall complexity and simplifies implementation. Experiments and simulations demonstrate the effectiveness of our robot system.
机译:在过去的十年中,人们已经看到了对开发特殊攀爬机器人的兴趣日益浓厚。清洁高层建筑,对储气罐进行喷漆和喷砂,检查和维护核设施,协助灭火和救援行动,远程监视危险环境等,所有这些实际问题都迫切需要自动化。攀爬机器人具有附着在墙面上并能够携带适当的传感器或工具四处走动的能力,是这类工作的最佳人选。攀爬机器人的特殊特性和功能不仅使他们能够代替人类在这些危险的工作中工作,而且消除了昂贵的脚手架架设工作。本文介绍了微型双足攀爬机器人的发展,重点是履带式机器人。该机器人是迄今为止此类机器人中最小的,能够爬墙,在天花板上行走,通过管道行走以及在两个倾斜表面之间移动。两个主动吸脚(泵电机将吸盘中的空气抽空)用于将机器人支撑在表面上。机器人采用双足结构和欠驱动机构,为机器人提供了灵活的移动性和多种运动模式。欠驱动机构减少了所需的电动机数量,从而减少了机器人的尺寸,重量和功耗,但对机器人的控制和运动计划提出了挑战。推导了机器人的运动学模型和动力学模型。对动力学模型的分析表明,机器人连杆重力是机器人动力学效应中的主要术语。提出了联合级PD(比例+微分)控制加前馈重力补偿的方法。该方法优于常规的PD控制方法,因为它不仅可以实现关节水平控制,而且可以补偿依赖于所有机械手链接配置的重力影响。设计并安装了基于DSP的嵌入式控制系统以控制机器人。通过使用DSP(数字信号处理器)芯片,电气元件的数量减至最少,并且控制系统是独立的。在运动计划分析中,提出了一种混合配置空间概念,该概念将连续的配置空间与离散的运动状态空间(即站立脚,运动模式)结合在一起。混合配置空间是分析攀爬机器人运动计划的有效工具,因为机器人的运动是在混合配置空间框架中唯一确定的。基于运动模式分析,开发了一种运动计划方法,该方法由全局计划者和本地计划者组成。全局计划器通过将机器人简化为没有运动学约束的矩形刚性对象来生成可能的路径。通过使用称为梯形分解的方法和称为A *的搜索算法,全局计划程序可以轻松平滑可能的路径,并允许机器人在平移模式下有效移动。可能的路径描述了机器人的整体运动并最大程度地减少了转弯。本地计划者的目的是通过考虑机器人约束条件,在转折点附近生成可行的运动序列。基于运动状态信息和许多启发式来定义成本函数,以帮助搜索最佳运动序列。这种使用全局和局部细化级别的方法降低了整体复杂性并简化了实现。实验和仿真证明了我们的机器人系统的有效性。

著录项

  • 作者

    Xiao, Jizhong.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号