首页> 美国卫生研究院文献>Frontiers in Neural Circuits >A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control
【2h】

A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control

机译:自发性攀爬纤维射击的小脑双半球神经网络模型在机器人控制期间产生不对称运动学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning.
机译:为了获得并维持生命周期内的精确运动控制,必须适应性地补偿肌肉的物理和生理特性的变化。小脑在这种适应中起着至关重要的作用。肌肉特征的变化并不总是对称的。例如,弯曲和拉直关节的肌肉不太可能发生相同程度的变化。因此,弯曲和伸直运动需要不同的(即,不对称的)适应。迄今为止,关于小脑在不对称适应中的作用知之甚少。在这里,我们调查使用双半球小脑神经元网络模型(biCNN)进行不对称适应所需的小脑机制。双半球结构是受以下观察启发的:损伤一个半球会不对称地降低运动性能。 biCNN模型可实时运行,并用于控制不稳定的两轮平衡机器人。修改了机器人的负载及其环境,以创建非对称扰动。 biCNN模型中平行纤维-Purkinje细胞突触处的可塑性是由攀爬纤维(cf)输入中的误差信号驱动的。此cf输入配置为从其自发发射速率(大约1 Hz)增加和降低其发射速率,并在每个半球的首选和非首选方向上出现感官错误,如猴子小脑所示。我们的结果表明,与单半球模型或经典的非自适应比例和微分控制器相比,biCNN模型成功地处理了非对称条件。此外,cf的自发活动虽然相对较小,但对于平衡每个小脑半球对发送给机器人的整体运动命令的贡献至关重要。消除自发活动会损害biCNN模型的不对称学习能力。因此,我们得出结论,双半球结构和cf输入的足够的自发活动对于小脑不对称运动学习至关重要。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号