首页> 外文学位 >An influence of crystal structure and interface formation on the electrical properties of nanoparticle printed thin films.
【24h】

An influence of crystal structure and interface formation on the electrical properties of nanoparticle printed thin films.

机译:晶体结构和界面形成对纳米粒子印刷薄膜电学性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The creation of inexpensive electronic devices through the direct printing of organic semiconductors is of interest for the clear advantages associated with device cost reduction through mass production using cheap substrates. However, the low inherent carrier mobility of organics places fundamental limitations on both the performance and types of devices that can be created with this approach. As a substitution for organics, printing of inorganic nanoparticles followed by subsequent sintering to form conductive films has been proposed. However, the high required sintering temperatures have restricted their usage.;Here, core-shell nanoparticles are proposed to reduce the sintering temperature of inorganic nanoparticles, with three semiconductor (or metal)-metal core-shell nanoparticle systems investigated; Ge-Ag, SnO2-Ag, and Cu-Ag. These were chosen because (1) silver exhibits a high surface self-diffusion, (2) silver has a low solubility in the core materials, and (3) silver dewets on the core materials. Due to the difficulty of synthesizing Ge-Ag and SnO 2-Ag core-shell nanoparticle systems, alternate approaches were taken to analyze the thermal behavior of these systems.;The thermal behavior of pure Ge nanoparticles was investigated, as first approach to determine the feasibility of using simple inorganic particles in printed electronics. Based on in situ transmission electron microscopy (TEM) annealing experiments mass transport temperature was at ≈ 200 °C. Additionally, it was found that different synthesis routes and sintering conditions lead to differences in the crystal structure of the Ge nanoparticles.;As a proof of principle experiment to predict the sintering behavior of SnO2-Ag core-shell nanoparticles, the annealing behavior of a SnO2/Ag/SnO2 trilayer was examined. Ag layer pinch off and the formation of both Ag rods and islands was observed. This implies that a potential SnO2-Ag core-shell nanoparticle system would exhibit sintering at lower temperatures than clean SnO2 nanoparticle system.;Finally, from the investigation of the sintering behavior of Ag-Cu core-shell nanoparticles, it was determined conclusively that the Ag shell leads to accelerated sintering of the copper, thereby validating the general principle.;Based on the results, the use of core-shell nanoparticles is a viable route to fabricate thin films using inorganic nanoparticles in printed electronics through the use of lower sintering temperatures.
机译:通过直接印刷有机半导体来创建廉价的电子设备,对于通过使用廉价的基板进行大量生产而降低设备成本的明显优势,引起了人们的兴趣。但是,有机物固有的低载流子迁移率对使用这种方法可以制造的设备的性能和类型都产生了根本性的限制。作为有机物的替代,已经提出了无机纳米颗粒的印刷,随后的烧结以形成导电膜的提议。然而,高的烧结温度限制了它们的使用。在此,提出了核-壳​​纳米颗粒以降低无机纳米颗粒的烧结温度,并研究了三种半导体(或金属)-金属核-壳纳米颗粒体系; Ge-Ag,SnO2-Ag和Cu-Ag。选择这些是因为(1)银表现出高的表面自扩散性;(2)银在芯材中的溶解度低;以及(3)银在芯材上的润湿性。由于难于合成Ge-Ag和SnO 2-Ag核-壳纳米粒子体系,采取替代方法来分析这些体系的热行为。;研究纯Ge纳米粒子的热行为,作为确定纳米粒子的第一种方法在印刷电子产品中使用简单无机颗粒的可行性。基于原位透射电子显微镜(TEM)退火实验,传质温度为≈ 200℃。此外,发现不同的合成路线和烧结条件导致Ge纳米粒子的晶体结构不同。;作为预测SnO2-Ag核壳纳米粒子烧结行为的原理实验,a的退火行为检查了SnO2 / Ag / SnO2三层。银层被夹断,观察到银棒和岛的形成。这暗示着潜在的SnO2-Ag核壳纳米粒子系统将在比清洁的SnO2纳米粒子系统更低的温度下显示出烧结。最后,通过对Ag-Cu核壳纳米粒子的烧结行为的研究,最终得出结论:银壳导致加速铜的烧结,从而验证了一般原理。基于结果,核壳纳米颗粒的使用是通过降低烧结温度在印刷电子产品中使用无机纳米颗粒制造薄膜的可行途径。

著录项

  • 作者

    Kim, Suk Jun.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号