首页> 外文学位 >Trajectory integration of the quantum hydrodynamic equations of motion.
【24h】

Trajectory integration of the quantum hydrodynamic equations of motion.

机译:运动的量子流体动力学方程的轨迹积分。

获取原文
获取原文并翻译 | 示例

摘要

Recently, in an effort to solve more realistic problems in quantum dynamics, much attention has been directed into numerically integrating the quantum hydrodynamic equations of motions (QHEM), as opposed to directly solving the time-dependent Schrödinger equation (TDSE). Such efforts have been provoked by the many numerical drawbacks encountered when solving the TDSE on a fixed-grid. In this dissertation, one trajectory method for integrating the QHEM is reviewed, and two novel trajectories methods are described. The first of these, the quantum trajectory method (QTM), was introduced in 1999 and has been used to solve many problems in quantum dynamics since then. However, severe numerical problems are encountered when this method is applied to problems that form wave function nodes. To get around this problem, new methods for numerically integrating the QHEM are needed. In the first novel method described, the arbitrary Lagrangian-Eulerian (ALE) method, particle trajectories are governed by a predetermined equation of motion that is user-supplied. The ALE method remedies inflation and compression problems encountered in the pure Lagrangian QTM. In the second new method discussed, the derivative propagating method (DPM), single quantum trajectories can be calculated one at a time, as opposed to the ensemble propagation of the QTM and ALE method. Using these two methods, new solutions to the QHEM are obtained where the QTM fails. In addition to solving the QHEM, the DPM is also used to solve the classical Klein-Kramers equation in this dissertation. This equation governs the Markovian phase space evolution of a system coupled to an environment such as a heat bath. This marks the fast time single trajectories have been used to solve both the QHEM and the Klein-Kramers equations.
机译:近来,为了解决量子动力学中更现实的问题,与直接求解与时间有关的薛定(方程(TDSE)相对,已经引起了很多关注,以数字方式集成了运动的量子流体动力学方程(QHEM)。在固定网格上解决TDSE时遇到的许多数值缺陷激起了这种努力。本文综述了一种集成QHEM的轨迹方法,并描述了两种新颖的轨迹方法。首先,量子轨迹法(QTM)于1999年引入,此后一直用于解决量子动力学中的许多问题。但是,将这种方法应用于形成波动函数节点的问题时,会遇到严重的数值问题。为了解决这个问题,需要新的方法对QHEM进行数值积分。在所描述的第一种新颖方法中,即任意拉格朗日-欧拉(ALE)方法,粒子轨迹由用户提供的预定运动方程式控制。 ALE方法可解决纯Lagrangian QTM中遇到的充气和压缩问题。在讨论的第二种新方法中,微分传播方法(DPM)可以一次计算一个量子轨迹,这与QTM和ALE方法的整体传播相反。使用这两种方法,可以在QTM失败的情况下获得针对QHEM的新解决方案。除了求解QHEM,本文还用DPM求解经典的Klein-Kramers方程。该方程控制与环境(如热浴)耦合的系统的马尔可夫相空间演化。这标志着快速时间单一轨迹已被用于求解QHEM和Klein-Kramers方程。

著录项

  • 作者

    Trahan, Corey Jason.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Chemistry Physical.; Physics Atomic.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.240
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号