首页> 外文学位 >Molecular beam epitaxy grown III-nitride materials for high-power and high-temperature applications: Impact of nucleation kinetics on material and device structure quality.
【24h】

Molecular beam epitaxy grown III-nitride materials for high-power and high-temperature applications: Impact of nucleation kinetics on material and device structure quality.

机译:分子束外延生长的III氮化物材料,用于高功率和高温应用:成核动力学对材料和器件结构质量的影响。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research is to investigate the effect of the initial growth conditions on characteristics of subsequent GaN epitaxial layers on sapphire substrates using molecular beam epitaxy (MBE) equipped with an rf-plasma nitrogen source. Two pretreatments are used at the initial growth of GaN: nitridation and buffer layers. The purpose of nitridation of sapphire is to convert the surface of sapphire (Al2O3) into a thin layer of AlN, suggesting the reduction of lattice mismatch (approximately 3%) with GaN. Growth of a GaN (or AlN) nucleation buffer layer of proper thickness under Ga (or Al)-rich conditions after nitridation is necessary to improve the electrical, structural, and optical characteristics of the subsequent GaN epitaxial layers. Moreover, the buffer design and synthesis provide control of GaN polarity whose difficulty is due to the non-centrosymmetric material of sapphire substrates.; New techniques have been developed to determine polarity: atomic hydrogen etching and surface potential electric force microscopy (SP-EFM), which provide the method for determining inversion domains as well as polarity of GaN epitaxial layers. These technologies, with proper buffer design, enable the achievement of single polar GaN epitaxial layers. For Mg-doped GaN, we investigated Mg incorporation behaviors into GaN epitaxial layers. We observed a reduction in Mg concentration with increasing Mg flux, which leads to a decreased hole concentration at high doping concentrations.
机译:这项研究的目的是使用配备有rf等离子体氮源的分子束外延(MBE),研究初始生长条件对蓝宝石衬底上后续GaN外延层特性的影响。在GaN的初始生长时使用了两种预处理:氮化层和缓冲层。氮化蓝宝石的目的是将蓝宝石(Al 2 O 3 )的表面转变成AlN薄层,这表明晶格失配的减少(大约3%) )和GaN。氮化后在富Ga(或Al)条件下生长适当厚度的GaN(或AlN)成核缓冲层对于改善后续GaN外延层的电学,结构和光学特性是必需的。此外,缓冲层的设计和合成提供了GaN极性的控制,这是由于蓝宝石衬底的非中心对称材料造成的。已经开发出确定极性的新技术:原子氢蚀刻和表面电势显微镜(SP-EFM),它们提供了确定GaN外延层的反型畴和极性的方法。这些技术,加上适当的缓冲设计,可以实现单极性GaN外延层。对于掺杂Mg的GaN,我们研究了将Mg掺入GaN外延层的行为。我们观察到镁浓度随着镁通量的增加而降低,这导致高掺杂浓度下空穴浓度降低。

著录项

  • 作者

    Namkoong, Gon.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.2867
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号