首页> 外文学位 >Design and fabrication of microfluidic integrated circuits using normally-closed elastomeric valves.
【24h】

Design and fabrication of microfluidic integrated circuits using normally-closed elastomeric valves.

机译:使用常闭弹性阀设计和制造微流体集成电路。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidics and other fluid-handling technologies are valuable tools both for biochemical assays and for patterning biomolecules and cells to better mimic in vivo microenvironments. However, many of these techniques are not widely used because they require the experimenter to perform many tasks that often are not in a familiar platform. Currently most microfluidic devices capable of performing fluid switching operations require external control systems that are expensive and cumbersome. This dissertation has two parts: the first will present networks of normally-closed elastomeric valves as a novel control system for performing automated switching operations in microfluidic devices. Since all functionality can be embedded into the architecture of the device, the user is only required to plug in a fluid flow source to operate the device. Fundamental fluidic operations such as cascading and oscillatory fluid switching are demonstrated as a proof-of-principle for achieving dynamic functionality. In addition, scalable fabrication techniques of essential components for these control systems will be described. The scalable integration of many components is the first hurdle for practical fabrication of more complex devices that use this embedded control system. The second part of the dissertation describes methods developed for patterning cells and biomolecules at the micro-scale. Within a microfluidic device, patterning is typically achieved using laminar flow of two or more streams to spatially position cells/biomolecules. Although this technique is straightforward, there are many practical issues involved in the control of the laminar streams, hindering many users from taking advantage of these technologies. Described is the use of embedded porous filters to help control laminar flows in a microfluidic device. Also described is the utility of aqueous two-phase systems (ATPS) to pattern both biomolecules and cells in a conventional Petri dish platform. This new technology enables contact-free printing on delicate substrates such as cells and hydrogels. Such fluid handling technologies will be a stepping-stone for the development of user-friendly devices and methods that can be utilized by nonspecialized users outside the field.
机译:微流体技术和其他流体处理技术对于生化分析以及对生物分子和细胞进行图案化以更好地模仿体内微环境都是有价值的工具。但是,这些技术中的许多技术并未得到广泛使用,因为它们要求实验人员执行通常不在熟悉的平台中的许多任务。当前,大多数能够执行流体切换操作的微流体设备需要昂贵且麻烦的外部控制系统。本文分为两个部分:第一部分将介绍常闭弹性阀网络,作为一种新颖的控制系统,用于在微流体装置中执行自动切换操作。由于所有功能都可以嵌入到设备的体系结构中,因此只需要用户插入流体源即可操作设备。诸如级联和振荡流体切换之类的基本流体操作已被证明是实现动态功能的原理证明。另外,将描述这些控制系统的基本部件的可扩展制造技术。许多组件的可伸缩集成是使用该嵌入式控制系统实际制造更复杂设备的首要障碍。论文的第二部分描述了在微观尺度上为细胞和生物分子构图的方法。在微流体装置内,通常使用两个或更多个流的层流在空间上定位细胞/生物分子来实现图案化。尽管此技术很简单,但是在层流控制中涉及许多实际问题,从而阻碍了许多用户利用这些技术。描述了使用嵌入式多孔过滤器来帮助控制微流体设备中的层流。还描述了水相两相系统(ATPS)在常规培养皿平台中对生物分子和细胞进行图样化的用途。这项新技术可在细胞和水凝胶等精细基材上实现非接触式印刷。这样的流体处理技术将成为开发用户友好型设备和方法的垫脚石,这些设备和方法可由本领域以外的非专业用户使用。

著录项

  • 作者

    Mosadegh, Bobak.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号