首页> 外文学位 >Model-based compartmental analysis of the kinetics of retinol and beta-carotine in humans: Statistical consideration in designing and building models for retinol plus expanded models for beta-carotene.
【24h】

Model-based compartmental analysis of the kinetics of retinol and beta-carotine in humans: Statistical consideration in designing and building models for retinol plus expanded models for beta-carotene.

机译:基于模型的人类视黄醇和β-胡萝卜素动力学的区室分析:视黄醇和β-胡萝卜素扩展模型的设计和构建中的统计考虑。

获取原文
获取原文并翻译 | 示例

摘要

Vitamin A is an essential nutrient. Kinetic studies have added to understanding of whole-body vitamin A metabolism. In particular, model-based compartmental analysis of retinol kinetics has deepened our knowledge about vitamin A metabolism, homeostasis, and dynamics. Here I discuss statistical considerations in designing and building improved compartment models for vitamin A kinetics in humans as well as the application of compartmental analysis to investigate the bioconversion and kinetics of beta-carotene metabolism.;In chapter 1, I review the literature including 1) previous studies that applied mathematical modeling to studies of vitamin A metabolism and kinetics; 2) beta-carotene metabolism and early studies of beta-carotene kinetics; and 3) statistical considerations for compartmental analysis, robustness testing, and the experimental design of vitamin A kinetic studies.;In chapter 2, I discuss fixing fractional transfer coefficients in a compartmental model for vitamin A kinetics. Fractional standard deviations (FSDs) related to the early stage of absorption of vitamin A showed high inter-individual variability in the compartmental model was applied to data collected from nine American subjects after an oral dose of [2H8]retinyl acetate. Then, I modified the original model so that transfer coefficients for absorption were fixed and analyzed the same kinetic data. The fixed parameter model provided a good data-model fit and none of the values for kinetic parameters were significantly different from those based on the original model. A population correlation coefficient matrix showed that no pairs of correlation coefficients were greater than 0.8, a threshold for numerical identifiability. I conclude that the fixed parameter model for vitamin A kinetics, with just five adjustable parameters, is simpler and more useful for studying vitamin A kinetics in human subjects without significantly affecting the accuracy of fitting the data.;In chapter 3, I discuss blood sampling times in vitamin A kinetic studies. One of the most important issues for an experiment using compartmental analysis in human subjects is determining the optimal times for blood collection. Sensitivity analysis was conducted to determine the most sensitive data point(s) for each parameter and eliminated the less sensitive data points. I decreased the number of blood samplings in original study (20 to 22 samples) to nine based on sensitivity analysis. Three samples were needed for the absorption stage before reaching the peak, one sample to define the peak of the curve, two to define vitamin A turnover, and three to describe the terminal slope. Similar to the results for the theoretical analysis, modeling the reduced data set did not affect model-predicted fractional transfer coefficients or other kinetic parameters compared to the full data set model.;In chapter 4, I study the bioconversion of beta-carotene to retinol in human subjects. A compartmental model was developed for retinol derived from two different sources of beta-carotene: [2H]beta-carotene contained in Golden Rice and pure [2H8]beta-carotene. After testing the initial model for each individual.s data (n = 12), there was both intestinal- and post-absorptive conversion in some subjects, whereas others did not show discernible post-absorptive bioconversion. The absorption efficiency for a single dose of beta-carotene ranged from 7.0 to 47.8 % in the subjects who received pure beta-carotene and 22.7 to 55.9 % in the subjects. High between-subject variability was observed in the efficiency of bioconversion, ranging from 6.9 to 54.5 %.;In chapter 5, to describe the kinetics of intact beta-carotene, the model includes one compartment for chylomicrons (remnant) beta-carotene, one for plasma non-chylomicron lipoprotein beta- carotene, and one for beta-carotene in the liver. Irreversible loss of beta-carotene from the system occurs directly from plasma in the proposed model. For retinol derived from beta-carotene in the enterocytes, the model includes one compartment for liver retinol, one for plasma retinol bound to retinol-binding protein, and one extravascular vitamin A pool that exchanges with plasma. The model predicted that 43 and 28 % of the beta-carotene dose was absorbed and that 82 and 66 % of the absorbed beta-carotene dose was taken up as intact beta-carotene by subjects 1 and 2, respectively. Total bioconversion for subjects 1 and 2 was 12.8 and 15.8 % and approximately 60 % of conversion occurred in the intestine for both participants. Only 10 % of extravascular â-carotene was converted to liver retinol via post-absorptive conversion for both subjects.;Overall this work contributes to the whole-body kinetics of retinol and beta-carotene metabolism in humans. The application of model-based compartmental analysis to nutritionally-interesting compounds allows investigators to generate unique information and thus advance knowledge.
机译:维生素A是必不可少的营养素。动力学研究增加了对全身维生素A代谢的了解。特别是,基于模型的视黄醇动力学隔室分析已加深了我们对维生素A代谢,体内稳态和动力学的了解。在这里,我讨论了在设计和建立改进的人体维生素A动力学模型时应考虑的统计因素,以及在分析β-胡萝卜素代谢的生物转化和动力学方面的分析方法。;在第一章中,我回顾了包括以下内容的文献:1)以前的将数学模型应用于维生素A代谢和动力学研究的研究; 2)β-胡萝卜素的代谢和β-胡萝卜素动力学的早期研究; 3)进行隔室分析,鲁棒性测试和维生素A动力学研究的实验设计的统计考虑。在第二章中,我讨论了在维生素A动力学的隔室模型中固定分数转移系数。与维生素A吸收早期有关的分数标准偏差(FSD)显示,隔室模型中的个体间差异很大,已应用于从口服[2H8]乙酸视黄酯后从9位美国受试者那里收集的数据。然后,我修改了原始模型,以便固定了吸收的传递系数,并分析了相同的动力学数据。固定参数模型提供了良好的数据模型拟合,并且动力学参数的值与基于原始模型的值均无显着差异。总体相关系数矩阵显示,没有相关系数对大于0.8(数值可识别性的阈值)。我得出的结论是,只有五个可调节参数的维生素A动力学固定参数模型在研究人类受试者的维生素A动力学而又不显着影响拟合数据的准确性的情况下更简单,更有用。在第3章中,我讨论了血液采样维生素A动力学研究的次数。在人类受试者中使用隔室分析进行实验的最重要问题之一是确定血液采集的最佳时间。进行了敏感性分析,以确定每个参数的最敏感数据点,并消除了较不敏感的数据点。根据敏感性分析,我将原始研究中的血液采样数量(20到22个样本)减少到了9个。在达到峰值之前的吸收阶段需要三个样品,一个样品定义曲线的峰值,两个样品定义维生素A的转换,另外三个描述终点斜率。与理论分析的结果类似,与完整数据集模型相比,对简化的数据集进行建模不会影响模型预测的分数转移系数或其他动力学参数。在第4章中,我研究了β-胡萝卜素向视黄醇的生物转化。在人类受试者中。为视黄醇开发了一种隔室模型,该视黄醇来源于两种不同的β-胡萝卜素来源:金大米中所含的[2H]β-胡萝卜素和纯净的[2H8]β-胡萝卜素。在测试了每个人的数据的初始模型(n = 12)之后,某些受试者既有肠道吸收也有吸收后转化,而另一些受试者则没有明显的吸收后生物转化。在接受纯β-胡萝卜素的受试者中,单剂量β-胡萝卜素的吸收效率为7.0%至47.8%,在受试者中为22.7%至55.9%。生物转化效率在受试者之间具有很高的变异性,范围从6.9%到54.5%。;在第5章中,为描述完整的β-胡萝卜素的动力学,该模型包括一个乳糜微粒(残基)β-胡萝卜素的区室,一个区室用于血浆非乳糜微粒脂蛋白β-胡萝卜素,一种用于肝脏中的β-胡萝卜素。系统中β-胡萝卜素的不可逆损失直接来自建议模型中的血浆。对于肠细胞中源自β-胡萝卜素的视黄醇,该模型包括一个用于肝视黄醇的隔室,一个用于血浆视黄醇与视黄醇结合蛋白结合的隔室以及一个与血浆交换的血管外维生素A库。该模型预测,受试者1和2分别吸收了43%和28%的β-胡萝卜素,吸收的82%和66%的β-胡萝卜素是完整的β-胡萝卜素。受试者1和受试者2的总生物转化率分别为12.8和15.8%,并且两个参与者的肠道转化率约为60%。两位受试者仅10%的血管外β-胡萝卜素通过吸收后转化而转化为肝视黄醇。总体而言,这项工作有助于人类体内视黄醇和β-胡萝卜素代谢的全身动力学。将基于模型的区室分析应用于对营养有益的化合物,可使研究人员生成独特的信息,从而提高知识水平。

著录项

  • 作者

    Park, Hyunjin.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Health Sciences Nutrition.;Statistics.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 309 p.
  • 总页数 309
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号