首页> 外文学位 >Gate delay modeling and static timing analysis in ASIC designs considering process variations.
【24h】

Gate delay modeling and static timing analysis in ASIC designs considering process variations.

机译:考虑工艺变化的ASIC设计中的门延迟建模和静态时序分析。

获取原文
获取原文并翻译 | 示例

摘要

Static timing analysis (STA) is a key tool used for the design, optimization, and final sign-off of VLSI (Very Large Scale Integration) circuits. The down scaling of layout geometries to 22nm and below has resulted in a significant increase in the packing density and operational frequency of VLSI circuits. The conventional slew/Ceff-based STA can no longer provide sufficient calculation accuracy for circuits that are designed based on modern CMOS processes and ASIC (Application Specific Integrated Circuits) libraries. Consequently, industry is moving to Current Source Models (CSMs) as the basis for an alternative and more accurate STA tool (the two standard models used throughout the industry are: ECSM, and CCS.);From another perspective, as we move toward feature sizes of 22nm and beyond, process variations have become an increasingly important concern in the design of high performance circuits. More precisely, corner-based STA techniques have become computationally expensive as the number of variation sources has increased. At the same time, corner-based analysis tools tend to result in overly conservative delay estimates. Statistical static timing analysis (SSTA) has been proposed to address these shortcomings.;CSM-based SSTA requires more computations and significantly higher memory resources than conventional SSTA. This is a key problem that must be solved before CSM based SSTA can take off.;This dissertation introduces a rigorous and robust foundation to mathematically model output waveforms of CSM library cells under sources of variability and to compress the library data. Compression is achieved by representing each output waveform as a linear combination of a carefully selected set of basis waveforms, which are in turn obtained by performing principle component analysis on the set of all output waveforms under all combinations of input slews and output loads for all logic cells in the ASIC library. Interpolation and further compression is obtained by representing the coefficients as signomial functions of various parameters, e.g., input slew, load capacitance, supply voltage, and temperature and process variables.;Furthermore, this dissertation introduces novel, accurate, waveform propagation algorithms to be used for CSM-based STA. In contrast to traditional methods, the new algorithms derive their accuracy from propagating detailed waveforms from inputs to outputs of gates, rather than using abstracted waveforms parametrized by just one parameter, e.g., slew rate. The proposed algorithms can be used for different gate load configurations, ranging from purely capacitive, to the most general resistance, capacitance (inductance), i.e., RC(L), network. This approach also eliminates the need to constantly switch back and forth from the original time-domain representation of output waveforms to the compacted waveform-domain representation, and hence, speeds up CSM-based STA.;This dissertation also presents a methodology to characterize interdependent setup/hold times of flip-flop in the presence of process variations. The proposed methodology enables SSTA to report a set of probability values that accurately represent the percentage of time that the flip-flop fails. In contrast, a STA tool reports the percentage of flip-flops that fail the setup and hold time constraints, and this value may be optimistic or pessimistic for a circuit whose gate delay parameters are subject to random variations.
机译:静态时序分析(STA)是用于VLSI(超大规模集成电路)电路的设计,优化和最终签核的关键工具。布局几何尺寸缩小至22nm及以下已导致VLSI电路的封装密度和工作频率显着提高。对于基于现代CMOS工艺和ASIC(专用集成电路)库设计的电路,常规的基于转换/ Ceff的STA不能再提供足够的计算精度。因此,行业正在转向“电流源模型”(CSM)作为替代和更精确的STA工具的基础(整个行业使用的两个标准模型是:ECSM和CCS。);换句话说,随着我们朝着功能化方向发展在22nm及以上的尺寸中,工艺变化已成为高性能电路设计中越来越重要的问题。更准确地说,随着变化源数量的增加,基于角点的STA技术在计算上变得昂贵。同时,基于角点的分析工具往往会导致过于保守的延迟估计。已经提出了统计静态时序分析(SSTA)来解决这些缺点。基于CSM的SSTA与常规SSTA相比,需要更多的计算和显着更高的内存资源。这是基于CSM的SSTA起飞之前必须解决的关键问题。本文为在可变性源下对CSM库单元的输出波形进行数学建模并压缩库数据提供了严格而强大的基础。通过将每个输出波形表示为一组精心选择的基础波形的线性组合来实现压缩,然后依次对所有输出逻辑和输入负载的所有组合在所有输出波形的组合下对所有输出波形进行主成分分析,从而获得压缩结果ASIC库中的单元。通过将系数表示为各种参数(例如,输入压摆,负载电容,电源电压以及温度和过程变量)的正则函数来获得内插和进一步压缩。此外,本论文介绍了要使用的新颖,准确的波形传播算法用于基于CSM的STA。与传统方法相反,新算法通过将详细波形从门的输入传播到输出来获得其准确性,而不是使用仅由一个参数(例如压摆率)参数化的抽象波形。所提出的算法可以用于不同的栅极负载配置,范围从纯容性到最通用的电阻,电容(电感),即RC(L)网络。该方法还消除了不断地从原始输出波形的时域表示来回切换到压缩波形域表示的需求,从而加快了基于CSM的STA的使用。存在过程变化时触发器的建立/保持时间。所提出的方法使SSTA能够报告一组概率值,这些概率值准确地表示触发器失败的时间百分比。相反,STA工具报告未通过建立和保持时间限制的触发器的百分比,并且对于栅极延迟参数易受随机变化影响的电路,该值可能是乐观的或悲观的。

著录项

  • 作者

    Hatami, Safar.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号