首页> 外文学位 >Hybrid Silicon Nanophotonic Devices: Enhancing Light Emission, Modulation, and Confinement.
【24h】

Hybrid Silicon Nanophotonic Devices: Enhancing Light Emission, Modulation, and Confinement.

机译:混合硅纳米光子器件:增强发光,调制和约束。

获取原文
获取原文并翻译 | 示例

摘要

Silicon has become an increasingly important photonic material for communications, information processing, and sensing applications. Silicon is inexpensive compared to compound semiconductors, and it is well suited for confining and guiding light at standard telecommunication wavelengths due to its large refractive index and minimal intrinsic absorption. Furthermore, silicon-based optical devices can be fabricated alongside microelectronics while taking advantage of advanced silicon processing technologies. In order to realize complete chip-based photonic systems, certain critical components must continue to be developed and refined on the silicon platform, including compact light sources, modulators, routers, and sensing elements. However, bulk silicon is not necessarily an ideal material for many active devices because of its meager light emission characteristics, limited refractive index tunability, and fundamental limitations in confining light beyond the diffraction limit.;In this thesis, we present three examples of hybrid devices that use different materials to bring additional optical functionality to silicon photonics. First, we analyze high-index-contrast silicon slot waveguides and their integration with light-emitting erbium-doped glass materials. Theoretical and experimental results show significant enhancement of spontaneous emission rates in slot structures. We then demonstrate the integration of vanadium dioxide, a thermochromic phase-change material, with silicon waveguides to form micron-scale absorption modulators. It is shown experimentally that a 2-mum long waveguide-integrated device exhibits broadband modulation of more than 6.5 dB at wavelengths near 1550 nm. Finally, we demonstrate polymer-on-gold dielectric-loaded surface-plasmon waveguides and ring resonators coupled to silicon waveguides with 1.0+/-0.1 dB insertion loss. The plasmonic waveguides are shown to support a single surface mode at telecommunication wavelengths, with strong electromagnetic field confinement at the polymer-gold interface. These three device concepts show that diverse materials can be integrated with silicon waveguides to achieve enhanced light emission, broadband modulation, and strong confinement, all while retaining the advantages of the silicon photonics platform.
机译:硅已经成为用于通信,信息处理和传感应用的越来越重要的光子材料。与化合物半导体相比,硅价格便宜,并且硅由于折射率高且固有吸收最小,因此非常适合在标准电信波长处限制和引导光。此外,基于硅的光学器件可以与微电子器件一起制造,同时利用先进的硅加工技术。为了实现完整的基于芯片的光子系统,必须在硅平台上继续开发和完善某些关键组件,包括紧凑型光源,调制器,路由器和感应元件。然而,体硅由于其微弱的发光特性,有限的折射率可调性以及将光限制在衍射极限之外的基本限制,并不一定是许多有源器件的理想材料。在本文中,我们给出了三个混合器件的例子使用不同的材料为硅光子学带来更多的光学功能。首先,我们分析了高折射率对比的硅缝隙波导及其与发光掺-玻璃材料的集成。理论和实验结果表明,缝隙结构中的自发发射率显着提高。然后,我们演示了热变色相变材料二氧化钒与硅波导的集成,以形成微米级的吸收调制器。实验表明,一个2微米长的集成波导的器件在1550 nm附近的波长处显示出超过6.5 dB的宽带调制。最后,我们演示了金载聚合物电介质表面等离子体激元波导和耦合到硅波导的环形谐振器,插入损耗为1.0 +/- 0.1 dB。示出了等离激元波导在电信波长下支持单表面模式,并且在聚合物-金界面处具有强电磁场限制。这三个器件的概念表明,多种材料可以与硅波导集成在一起,以实现增强的发光,宽带调制和强大的封闭性,同时保留了硅光子学平台的优势。

著录项

  • 作者

    Briggs, Ryan Morrow.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号