首页> 美国卫生研究院文献>Nanomaterials >Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices
【2h】

Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

机译:嵌入氮化硅薄膜中的硅量子点与金纳米粒子在发光器件中的耦合增强了电致发光

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.
机译:如今,使用等离激元金属层来改善几个半导体量子点的光子发射特性是一种蓬勃发展的工具。在这项工作中,我们报告了嵌入氮化硅薄膜中的硅量子点(SiQD)与超薄金膜(AuNPs)结合使用来制造发光器件的过程。为了生长两种类型的氮化硅薄膜,我们使用了远程等离子体增强化学气相沉积技术(RPECVD)。一种具有几乎化学计量的成分,用作非辐射间隔基;另一种是化学成分过量的硅,这导致形成吸收在氮化硅薄膜中的硅量子点。通过直流溅射技术沉积超薄金膜,并通过超声喷雾热解沉积的铝掺杂氧化锌薄膜(AZO)起到了类似欧姆金属电极的作用。我们发现当使用适当的AuNPs-spacer-SiQDs配置时,有最大的电致发光(EL)增强。该EL是在11 V的适中导通电压下获得的,并且EL增强比相同AuNPs-spacer-SiQDs配置的光致发光(PL)增强大四倍。从我们的实验结果中,我们推测EL增强的确可能是由于等离子体耦合。这种基于硅的LED具有技术转让的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号