首页> 外文学位 >Thermal Desorption Studies of Corn Oil at Frying Temperatures: Thermal Scission vs Autoxidation.
【24h】

Thermal Desorption Studies of Corn Oil at Frying Temperatures: Thermal Scission vs Autoxidation.

机译:玉米油在油炸温度下的热脱附研究:热裂解与自氧化反应。

获取原文
获取原文并翻译 | 示例

摘要

Thermal degradation occurs in all oils during frying, limiting useful fry life as well as quality and shelf life of fried foods. To elucidate the reactions involved, thermal degradation processes in corn oil heated to elevated temperatures were studied using thermal desorption techniques to detect released volatiles. Corn oil was loaded into glass Purge & Trap tubes containing a Celite support to increase oil surface area, and heated to 100, 120, 150, 180, and 235°C under nitrogen or air for up to 2 hours. Volatiles were flushed from the tubes and collected on Tenax-Carboxen thermal desorption traps at short intervals to limit the number of products present and provide a map of product changes over time, then desorbed into a Gas Chromatography-Mass Spectrometry system. Under air at 100-120°C, oxidation was slow; major shifts in mechanism occurred between 120 and 150°C and again at 235°C, with exponential increase in both rates of degradation and numbers of different products at each temperature. Above 150°C, complex product mixtures containing primarily C-4 to C-12 alkanes and alkenes, with low levels of oxidation products formed within minutes under nitrogen. Major scission points were carbons adjacent to the last double bond, yielding pentane from linoleic acid and octane and 1-decene from oleic acid. Under air, aldehydes, and alcohols of the same chain length plus 2-pentyl furan and ketones were released in much higher quantities. Simple oxidation products formed early in heating; as heating time increased, product mixtures became quite complex and included many cyclization and rearrangement products.;Results support radicals from thermal scissions as major initiators of thermal degradation processes in oils. In air, these radicals form terminal peroxyl radicals and hydroperoxides which then decompose to oxidation products of the same chain length, dimerize, or initiate autoxidation chains by abstracting radicals at C13 of linoleic acid; decomposition of the C 13-OOH releases pentane and hexanal. Thermal scissions are especially important for industrial frying conducted under limited oxygen while autoxidation is the dominant degradation affecting quality in food service operations, where oils are heated in air and may be used for many days.
机译:在油炸过程中,所有油类都会发生热降解,从而限制了油炸食品的有用寿命以及油炸食品的质量和保质期。为了阐明所涉及的反应,使用热脱附技术研究了加热到高温的玉米油中的热降解过程,以检测释放的挥发物。将玉米油装入装有硅藻土载体的玻璃吹扫捕集管中,以增加油的表面积,并在氮气或空气中加热至100、120、150、180和235°C长达2小时。从试管中冲洗掉挥发物,并在较短的间隔内收集在Tenax-Carboxen热脱附阱上,以限制存在的产品数量并提供产品随时间变化的图,然后将其脱附到气相色谱-质谱系统中。在100-120°C的空气中,氧化缓慢。机理的主要变化发生在120到150°C之间,然后又在235°C发生,降解速率和每种温度下不同产物的数量呈指数增长。高于150°C,复杂的产物混合物主要包含C-4至C-12烷烃和烯烃,在氮气氛下数分钟内形成的氧化产物含量低。主要的断裂点是与最后一个双键相邻的碳,从亚油酸和辛烷产生戊烷,从油酸产生1-癸烯。在空气中,相同链长的醛和醇,再加上2-戊基呋喃和酮的释放量更高。加热初期形成简单的氧化产物;随着加热时间的增加,产品混合物变得非常复杂,并包括许多环化和重排产品。结果支持了热裂解的自由基,这些自由基是油中热降解过程的主要引发剂。在空气中,这些自由基形成末端过氧自由基和氢过氧化物,它们随后分解为相同链长的氧化产物,通过在亚油酸的C13处提取自由基来二聚或引发自氧化链; C 13-OOH的分解释放出戊烷和己醛。热切割对于在有限的氧气下进行的工业油炸尤为重要,而自氧化是影响食品服务质量的主要降解因素,在食品服务中,油在空气中加热并可能使用许多天。

著录项

  • 作者

    Qin, Xiaotian.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Agriculture Food Science and Technology.
  • 学位 M.S.
  • 年度 2011
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号