首页> 外文学位 >Development of a Deep Submicron Fabrication Process for Tunneling Field Effect Transistors.
【24h】

Development of a Deep Submicron Fabrication Process for Tunneling Field Effect Transistors.

机译:开发用于隧道场效应晶体管的深亚微米制造工艺。

获取原文
获取原文并翻译 | 示例

摘要

The requirements placed upon next-generation devices include high on-state current, low power supply voltages, and low subthreshold swing. Tunneling Field Effect Transistors (TFETs) have been of recent interest because they have the potential to fulfill these requirements. The TFET is a gated tunnel junction. The TFET operates by modulating the probability of band-to-band tunneling between the source and the channel of the device. When the tunnel transistor is off, there is a potential barrier between the source and the channel. The width of this potential barrier is large enough to prevent electrons tunneling from the valence to conduction bands, the result of which is a lower leakage current and improved power efficiency. The potential barrier narrows as bias is applied to the gate. When the applied gate voltage exceeds the threshold voltage this potential barrier becomes thin enough to allow for tunneling from the valence band to the conduction band. The tunneling mechanism allows the device to have a high on-state current and low subthreshold swing at low power supplies.;To date the majority of the work involving TFETs has been simulation-based. Unfortunately the models used in these simulations are deficient. The models require physical data for proper calibration*. The few experimental demonstrations of TFETs have not yielded a body of empirical data sufficient for calibration. This work intends to help provide that body of experimental data on gated and non-gated tunneling junctions in InGaAs. This work focuses on the development of a process to gate p-i-n junctions and extract the contribution of the gate on junction performance.;*Please refer to dissertation for references.
机译:对下一代设备的要求包括高导通电流,低电源电压和低亚阈值摆幅。隧道场效应晶体管(TFET)引起了人们的关注,因为它们有潜力满足这些要求。 TFET是门控隧道结。 TFET通过调制设备的源极和通道之间的带间隧穿概率来进行操作。当隧道晶体管截止时,在源极和沟道之间存在势垒。该势垒的宽度足够大以防止电子从价键隧穿到导带,其结果是较低的泄漏电流和提高的功率效率。当将偏压施加到栅极时,势垒变窄。当施加的栅极电压超过阈值电压时,该势垒变得足够薄,以允许从价带到导带的隧穿。隧穿机制使该器件在低电源下具有较高的导通状态电流和较低的亚阈值摆幅。迄今为止,涉及TFET的大部分工作都是基于仿真的。不幸的是,这些模拟中使用的模型是不足的。这些模型需要物理数据才能正确校准*。很少有TFET的实验演示未能得出足以进行校准的大量经验数据。这项工作旨在帮助提供有关InGaAs中门控和非门控隧道结的实验数据。这项工作的重点是发展p-i-n结的栅极工艺,并提取出栅极对结性能的贡献。**请参阅本文以获取参考。

著录项

  • 作者

    Barth, Michael J.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2011
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号