首页> 外文学位 >Erbium-doped amorphous silicon nitride light emitters for on-chip photonics applications.
【24h】

Erbium-doped amorphous silicon nitride light emitters for on-chip photonics applications.

机译:-掺杂非晶硅氮化硅发光体,用于片上光子学应用。

获取原文
获取原文并翻译 | 示例

摘要

Silicon Photonics is considered as a viable, scalable and cost-effective solution to "the interconnect bottleneck" problem. However, the engineering of complementary metal oxide semiconductor (CMOS) compatible light sources is considered the biggest challenge of silicon photonics. Er-doped silicon-based structures are very promising candidates for 1.54 pm operation. Although Er-doped fiber lasers and amplifiers are available for long-haul communications, the small emission cross section of Er severely limits the applicability to small footprint (∼2.5 cm2) optical chip applications due to the small gain x length product. As a result, engineering strategies to boost emission efficiency and optical gain under both optical and electrical pumping in Er-doped CMOS materials need to be developed.;Recently, energy sensitization of Er ions through Si-nanocrystals in Si-rich SiO2 films (Er:SRO) has been demonstrated with excitation cross sections (sigmaexc) of Er ions four-five orders of magnitude larger than sigmaabs. However, this approach suffers from the substantial free carrier losses introduced by Si-nanocrystals and the low fraction of optically active Er ions preventing net optical gain. Hence, novel materials approaches need to be developed.;In this thesis, Er-doped amorphous silicon nitride (Er:SiNx) by N2 reactive sputtering is developed as a CMOS compatible platform for light sources operating under both optical and electrical pumping. The origin of visible PL of SiNx is explained by radiative transitions via localized states at the band-tails of SiNx. The efficient energy transfer between the localized band tails states in SiNx and Er ions is discussed and, sigmaexc is quantified. By performing temperature dependent studies, we demonstrated that the energy transfer is phonon-mediated. Er PL intensity and lifetime are optimized in ErSiN x by varying the fabrication parameters and a fundamental trade-off between Er excitation and emission efficiencies is demonstrated. The origin of non-radiative centers deteriorating Er emission efficiency with excess Si in SiNx films is investigated. Photonic nano-cavities fabricated using active Er:SiNx films are studied, and emission linewidth narrowing due to the onset of stimulated emission along with Er ions transparency threshold are demonstrated under optical pumping paving the way to the engineering of optical amplifiers. Electrical devices were fabricated in Er:SiNx and the carrier conduction mechanism is attributed to Poole-Frenkel emission enabling high current densities in thin films Finally, multi-level Er electroluminescence was observed for the first time at relatively low voltages (5V). The sigmaexc under electrical pumping was measured to be 6 orders of magnitude larger than sigmaabs.;This thesis work provides systematic structural, optical and electrical studies of Er:SiNx in order to engineer a CMOS compatible light sources for on-chip applications.
机译:Silicon Photonics被认为是解决“互连瓶颈”问题的可行,可扩展且具有成本效益的解决方案。但是,互补金属氧化物半导体(CMOS)兼容光源的工程设计被认为是硅光子学的最大挑战。掺硅基结构非常适合1.54 pm操作。尽管掺Er的光纤激光器和放大器可用于长距离通信,但Er的小发射截面由于增益x长度乘积小而严重限制了其在小尺寸(约2.5 cm2)光学芯片应用中的适用性。因此,需要开发工程策略以提高掺Er CMOS材料在光和电泵浦下的发射效率和光增益。;最近,富Si的SiO2薄膜中通过Si纳米晶体对Er离子的能量敏化(Er :SRO)的Er离子的激发截面(sigmaexc)比sigmaabs大4个数量级。然而,该方法遭受由硅纳米晶体引入的大量自由载流子损耗以及低比例的光学活性Er离子的阻碍,从而阻止了净光学增益。因此,需要开发新颖的材料方法。本论文开发了通过N2反应溅射掺Er的非晶氮化硅(Er:SiNx)作为CMOS兼容平台,用于在光和电泵浦下工作的光源。 SiNx可见光PL的起源是通过SiNx带尾处的局部态的辐射跃迁来解释的。讨论了SiNx和Er离子中局部带尾态之间的有效能量转移,并对sigmaexc进行了量化。通过进行温度依赖性研究,我们证明了能量转移是声子介导的。通过改变制造参数,可在ErSiN x中优化Er PL强度和寿命,并证明了Er激发和发射效率之间的基本权衡。研究了SiNx膜中过量的Si导致Er发射效率下降的非辐射中心的起源。研究了使用有源Er:SiNx薄膜制造的光子纳米腔,并在光泵浦下证明了由于激发发射的开始以及Er离子的透明阈值而导致的发射线宽变窄,这为光放大器的设计铺平了道路。在Er:SiNx中制造了电子器件,其载流子传导机制归因于Poole-Frenkel发射,使得薄膜具有高电流密度。最后,首次在相对较低的电压(<5V)下观察到了多级Er电致发光。经测量,电泵下的sigmaexc比sigmaabs大6个数量级。本论文工作为Er:SiNx提供了系统的结构,光学和电学研究,以便为片上应用设计CMOS兼容光源。

著录项

  • 作者

    Yerci, Selcuk.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Solid State.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号