首页> 外文学位 >Energy transfer phenomena and radiative processes in silicon nitride based materials for on-chip photonics applications.
【24h】

Energy transfer phenomena and radiative processes in silicon nitride based materials for on-chip photonics applications.

机译:片上光子学应用中基于氮化硅的材料中的能量转移现象和辐射过程。

获取原文
获取原文并翻译 | 示例

摘要

Rare-earth (RE) doping of silicon-based structures provides a valuable approach for light-emitting devices which could be monolithically integrated atop the widespread silicon electronics platform and enables inexpensive integration of on-chip optical components. However, the small excitable fraction of RE ions and the substantial free carrier losses in Si nanostructures severely limit the possibility to achieve net optical gain using traditional Er doped materials, such as Er doped Si-rich oxides (Er:SRO). On the other hand, a novel material platform based on RE-doped silicon nitride (RE:Six) materials has recently revealed unique advantages for on-chip light source. Based on a variety of light emission spectroscopic techniques and rate equation modeling, light emission and energy transfer phenomena were studied to quantitatively assess the benefits of the novel Er and Nd doped SiNx (Er: SiN x and Nd:SiNx) material platform compared to the standard Er:SRO. Efficient energy transfer and nanosecond-time dynamics from SiN x matrices to RE ions with two orders of magnitude larger coupling coefficient than Er:SRO were demonstrated for the first time. The origin of this energy transfer was shown to consist of non-resonant phonon-mediated coupling by temperature-dependent experiments. In addition, a tradeoff between excitation efficiency by energy transfer and emission efficiency, determined by excess Si concentration, was discovered and studied. Although carrier absorption and non-radiative recombination jeopardize the observation of optical gain, differential loss measurements under femtosecond pulsed excitation resulted in the bleaching of the Er ground state absorption by energy transfer in Er:SiN x materials, which bears great hope for the engineering of Si-based lasers. On the other hand, with a superior 4-level system, Nd:SiNx is promising to lase with a lower threshold. To make use of the better field confinement in SiNx due to its higher refractive index, RE:SiN x microdisk resonant structures were investigated. Finite element method simulations were performed to study the whispering gallery modes (WGM) in RE: SiNx microdisk. Finally, stimulated emission in Nd:SiN x was reported for the first time by lifetime measurements of WGM in microdisk resonators.In this dissertation work, the energy transfer and radiative processes in SiNx-based materials were studied and the potential for RE:SiNx on-chip optical amplifiers was demonstrated.
机译:硅基结构的稀土(RE)掺杂为发光器件提供了一种有价值的方法,该器件可以单片集成在广泛的硅电子平台上,并且可以廉价地集成片上光学组件。然而,稀土离子的少量可激发部分和硅纳米结构中大量的自由载流子损耗严重限制了使用传统的掺Er的材料(例如掺Er的富Si氧化物(Er:SRO))获得净光学增益的可能性。另一方面,基于RE掺杂的氮化硅(RE:Six)材料的新型材料平台最近揭示了片上光源的独特优势。基于多种发光光谱技术和速率方程模型,研究了发光和能量转移现象,以定量评估新型掺Er和Nd的SiNx(Er:SiN x和Nd:SiNx)材料平台与传统材料相比的益处。标准Er:SRO。首次展示了从SiN x矩阵到RE离子的高效能量传输和纳秒级动力学,其耦合系数比Er:SRO大两个数量级。通过依赖温度的实验表明,这种能量转移的起源是由非共振声子介导的耦合组成的。另外,发现并研究了通过过量的Si浓度确定的通过能量转移的激发效率与发射效率之间的折衷。尽管载流子的吸收和非辐射复合损害了光增益的观测,但是飞秒脉冲激发下的微分损耗测量导致Er:SiN x材料中能量转移引起的Er基态吸收的漂白,这对En:SiN x材料的工程设计具有很大的希望。硅基激光器。另一方面,使用高级4级系统,Nd:SiNx有望以较低的阈值发射激光。为了利用由于其较高的折射率而在SiNx中具有更好的场限制,研究了RE:SiN x微盘谐振结构。进行了有限元方法模拟,以研究RE:SiNx微盘中的回音壁模式(WGM)。最后,通过微盘谐振器中WGM的寿命测量首次报道了Nd:SiNx的激发发射。本论文研究了SiNx基材料中的能量转移和辐射过程,并研究了RE:SiNx的潜力。演示了片上光放大器。

著录项

  • 作者

    Li, Rui.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Electronics and Electrical.Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号