首页> 外文学位 >The Szego Kernel for Non-Pseudoconvex Domains in C2.
【24h】

The Szego Kernel for Non-Pseudoconvex Domains in C2.

机译:C2中非伪凸域的Szego内核。

获取原文
获取原文并翻译 | 示例

摘要

There are many operators associated with a domain O ⊂ Cn with smooth boundary ∂O. There are two closely related projections that are of particular interest. The Bergman projection B is the orthogonal projection of L²(O) onto the closed subspace L²(O) ∩ O (O), where O (O) is the space of all holomorphic functions on O. The Szego projection S is the orthogonal projection of L²(∂O) onto the space H²(O) of boundary values of elements of O (O). On O, these projection operators have integral representations Bf z=W fwB z,wdw,S fz =6Wf wSz,w dsw. The distributions B and S are known respectively as the Bergman and Szego kernels. In an attempt to prove that B and S are bounded operators on Lp, 1 p infinity, many authors have obtained size estimates for the kernels B and S for pseudoconvex domains in Cn .;In this thesis, we restrict our attention to the Szego kernel for a large class of domains of the form O = {(z, w) ∈ C2 : Im[w] > b ( Re[z])}. Such a domain fails to be pseudoconvex precisely when b is not convex on all of R . In an influential paper, Nagel, Rosay, Stein, and Wainger obtain size estimates for both kernels and sharp mapping properties for their respective operators in the convex setting. Consequently, if b is a convex polynomial, the Szego kernel S is absolutely convergent off the diagonal only. Carracino proves that the Szego kernel has singularities on and off the diagonal for a specific non-smooth, non-convex piecewise defined quadratic b. Her results are novel since very little is known for the Szego kernel for non-pseudoconvex domains O. I take b to be an arbitrary even-degree polynomial with positive leading coefficient and identify the set in C2xC2 on which the Szego kernel is absolutely convergent. For a polynomial b, we will see that the Szego kernel is smooth off the diagonal if and only if b is convex. These results provide an incremental step toward proving the projection S is bounded on Lp(∂O), 1 p infinity, for a large class of non-pseudoconvex domains O.
机译:有许多运算符与具有光滑边界的域O⊂Cn相关。有两个特别相关的密切相关的预测。 Bergman投影B是L²(O)在闭合子空间L²(O)∩O(O)上的正交投影,其中O(O)是O上所有全纯函数的空间。Szego投影S是正交投影L²(∂O)到O(O)元素边界值的空间H²(O)上。在O上,这些投影算子具有积分表示Bf z = W fwB z,wdw,S fz = 6Wf wSz,w dsw。分布B和S分别称为Bergman和Szego核。为了证明B和S是Lp上的有界算子,1 <无穷大,许多作者已经获得了Cn中伪凸域的核B和S的大小估计;在本文中,我们将注意力集中在Szego核用于形式为O = {(z,w)∈C2:Im [w]> b(Re [z])}的一大类域。当b在所有R上都不凸时,这样的域就不能精确地是伪凸的。在有影响力的论文中,Nagel,Rosay,Stein和Wainger获得了两个粒子的大小估计以及凸设置中其各自算子的清晰映射特性。因此,如果b是一个凸多项式,则Szego核S绝对仅从对角线收敛。 Carracino证明,对于特定的非光滑,非凸分段定义的二次b,Szego核在对角线上和下都具有奇异性。她的结果是新颖的,因为对于非伪凸域O的Szego内核知之甚少。我将b设为具有正超前系数的任意偶数多项式,并确定C2xC2中的Szego内核绝对收敛的集合。对于多项式b,我们将看到,当且仅当b是凸的时,Szego核才平滑对角线。这些结果提供了一个增量步骤,可证明对于一大类非伪凸域O,投影S限制在Lp(= O)上,1 <无穷大。

著录项

  • 作者

    Gilliam, Michael Anthony.;

  • 作者单位

    University of Montana.;

  • 授予单位 University of Montana.;
  • 学科 Mathematics.;Theoretical Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号