首页> 外文学位 >Dynamic discrete choice models for car ownership modeling.
【24h】

Dynamic discrete choice models for car ownership modeling.

机译:用于汽车拥有权建模的动态离散选择模型。

获取原文
获取原文并翻译 | 示例

摘要

With the continuous and rapid changes in modern societies, such as the introduction of advanced technologies, aggressive marketing strategies and innovative policies, it is more and more recognized by researchers in various disciplines from social science to economics that choice situations take place in a dynamic environment and that strong interdependencies exist among decisions made at different points in time. The increasing concerns about climate change, the development of high-tech vehicles, and the extensive applications of demand models in economics and transportation areas motivate this research on vehicle ownership based on disaggregate discrete choices. Over the next five to ten years, dramatic changes in the automotive marketplace are expected to occur and new opportunities might arise. Therefore, a methodology to model dynamic vehicle ownership choices is formulated and implemented in this dissertation for short and medium-term planning.;In the proposed dynamic model framework, the car ownership problem is described as a regenerative optimal stopping problem; when a purchase is made, the current vehicle state (vehicle age, mileage driven, etc.) is regenerated. The model allows the estimation of the probability of buying a new vehicle or postponing this decision; if the decision to buy is made, the model further investigates the vehicle type choices. Dynamic models explicitly account for consumers' expectations of future vehicle quality or market evolution, arising endogenously from their purchase decisions.;Both static and dynamic formulations are applied first to simulated data in order to test the ability to recover the true underlying parameters of the synthetic population. Results obtained attest that the dynamic model outperforms the static MNL in terms of goodness of fit, parameters bias and predictive power. In particular, it is found that MNL captures the general trends in choice probabilities, but fails to recover peaks in demand and behavioral changes due to rapidly evolving external conditions.;The extension to a real case study required a data collection effort. A preliminary pilot survey was designed and executed in the State of Maryland in fall 2010; the survey was self-administrated and web-based. Choices were made under the hypothesis that an interval time period of six months passed from a decision to the successive decision and choices over a hypothetical time period of six years were recorded.;Finally, the application of dynamic discrete choice models to vehicle ownership decisions in the context of the introduction of new technology is proposed. Results from the real case study confirm our initial expectations, as the model fit is significantly superior to the fit of the static model.
机译:随着现代社会的不断和迅速变化,例如先进技术的引入,激进的营销策略和创新政策的出现,从社会科学到经济学的各个学科的研究人员越来越认识到,选择情况是在动态环境中发生的。并且在不同时间点做出的决策之间存在很强的相互依赖性。人们对气候变化,高科技车辆的发展以及需求模型在经济和运输领域的广泛应用的关注日益增加,这促使人们对基于离散选择的车辆所有权进行研究。在未来的五到十年中,预计汽车市场将发生巨大变化,并且可能会出现新的机遇。因此,本文针对中短期规划,提出并实现了一种动态的车辆保有量选择模型。在所提出的动态模型框架中,汽车保有量问题被描述为再生最优停车问题。购买时,将重新生成当前的车辆状态(车龄,行驶里程等)。该模型可以估算购买新车或推迟这一决定的可能性。如果做出购买决定,则模型会进一步调查车辆类型选择。动态模型明确考虑了消费者对未来汽车质量或市场发展的期望,这些期望源于他们的购买决策。;静态和动态公式都首先应用到模拟数据中,以测试恢复合成的真实基础参数的能力人口。获得的结果证明,在拟合优度,参数偏差和预测能力方面,动态模型优于静态MNL。尤其是,发现MNL可以捕捉选择概率的总体趋势,但由于外部条件的迅速发展而无法恢复需求和行为变化的峰值。;扩展到实际案例研究需要数据收集工作。初步试点调查是在2010年秋季在马里兰州设计并执行的;这项调查是自我管理且基于网络的。在以下假设下做出选择:假设从决策到连续决策的间隔时间为六个月,并记录了假设的六年时间内的选择。最后,将动态离散选择模型应用于汽车所有权决策中提出了引入新技术的背景。真实案例研究的结果证实了我们的最初期望,因为模型拟合显着优于静态模型。

著录项

  • 作者

    Xu, Renting.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Applied Mathematics.;Economics Theory.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号