首页> 外文学位 >Growth of carbon nanotubes and semiconductor nanowires on silicon by chemical vapor deposition.
【24h】

Growth of carbon nanotubes and semiconductor nanowires on silicon by chemical vapor deposition.

机译:通过化学气相沉积在硅上生长碳纳米管和半导体纳米线。

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanotubes (CNTs) are a promising material for nano-electronic devices because of their electrical properties and very small diameter. However, controlling their electronic properties depending on chirality and tube diameter of the CNTs and growth direction of the CNTs has been a challenge for realizing nanotube-based electronic devices. Until now, the growth mechanism of CNTs was not fully understood and controlling the growth of CNTs completely is still a major challenge. Understanding of the growth mechanism of CNTs is an essential in order to achieve controllability in both growth direction and electrical properties of nanotubes by chemical vapor deposition (CVD). There are many variables, however, to consider in this process, including the type of gases, catalyst metals, and supporting substrates.; Supporting substrates of the catalyst metals are also an important factor in the growth of carbon nanotube. It is known that interaction between catalyst particle and support is required for catalytic activity. In particular, oxygen-containing materials are known as a suitable support for this purpose. Our study is focused on the growth mechanism of CNTs on silicon oxide by chemical vapor deposition (CVD). In particular, the chemical interaction between the vapor phase and the supporting oxide is investigated relating to the growth mechanism of CNTs.; Methane (CH4) and hydrogen (H2) are used as reaction gases and nickel is used as a catalyst. CO is generated by chemical interaction between the supporting oxide and the process gases; thereby complicates the composition of the gas components in CVD process. In order to modulate CO vapor concentration in the system, metal oxide powders, such as titanium oxide (TiO2), silicon oxide (SiO2) and silicon oxide/iron nitrate mixture are adopted based on the thermodynamic calculation of CO vapor pressure of the each oxide in the CH4-H2 system.; Nanotubes can be used individually or as an ensemble to build a functional device prototype. Ensembles of nanotubes have been used for field emission based flat panel display. Individual nanotubes have been used for field emission sources and as tips for scanning probes. Nanotubes also have significant potential as the central elements of nano-electronic devices including field effect transistors (FETs), single-electron transistors, and rectifying diodes. In an effort to find a way to align carbon nanotubes on silicon substrate, the growth orientation of carbon nanotube is investigated on single crystal iron nano particles on silicon wafer. The iron nano particles are adhered to the substrate by magnetic field from dispersion. Our study suggests the possibility of controlling the growth orientation of the CNTs. Furthermore, novel evidence is given for the growth mechanism of the CNTs by CVD.
机译:碳纳米管(CNTs)由于其电学特性和非常小的直径,因此是用于纳米电子设备的有前途的材料。然而,依赖于CNT的手性和管直径以及CNT的生长方向来控制它们的电子性质对于实现基于纳米管的电子器件是一个挑战。迄今为止,尚未完全理解CNT的生长机理,并且完全控制CNT的生长仍然是主要挑战。为了通过化学气相沉积(CVD)在纳米管的生长方向和电性能上实现可控性,理解CNT的生长机理是必不可少的。但是,在此过程中要考虑许多变量,包括气体类型,催化剂金属和支撑基材。催化剂金属的支撑基质也是碳纳米管生长的重要因素。已知催化剂颗粒和载体之间的相互作用对于催化活性是必需的。特别地,已知含氧材料是用于该目的的合适载体。我们的研究集中在通过化学气相沉积(CVD)在氧化硅上CNT的生长机理。尤其是,研究了气相与支持氧化物之间的化学相互作用,这与CNT的生长机理有关。甲烷(CH4)和氢气(H2)用作反应气体,镍用作催化剂。一氧化碳是由辅助氧化物与工艺气体之间的化学相互作用产生的;从而使CVD工艺中气体成分的组成复杂化。为了调节系统中的CO蒸气浓度,基于每种氧化物的CO蒸气压的热力学计算,采用金属氧化物粉末,例如氧化钛(TiO2),氧化硅(SiO2)和氧化硅/硝酸铁混合物。在CH4-H2系统中。纳米管可以单独使用,也可以作为整体来构建功能设备原型。纳米管的集合体已经用于基于场发射的平板显示器。各个纳米管已被用作场发射源并用作扫描探针的尖端。纳米管作为包括场效应晶体管(FET),单电子晶体管和整流二极管在内的纳米电子设备的核心元素也具有巨大的潜力。为了找到使碳纳米管在硅衬底上取向的方法,研究了碳纳米管在硅晶片上的单晶铁纳米颗粒上的生长取向。铁纳米颗粒通过来自分散体的磁场而粘附至基板。我们的研究表明控制CNTs生长方向的可能性。此外,给出了通过CVD的CNT生长机理的新证据。

著录项

  • 作者

    Lee, Ki-Hong.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号