首页> 外文学位 >Variation-aware circuit and chip level power optimization in digital VLSI systems.
【24h】

Variation-aware circuit and chip level power optimization in digital VLSI systems.

机译:数字VLSI系统中的变化感知电路和芯片级功率优化。

获取原文
获取原文并翻译 | 示例

摘要

In today's IC design, one of the key challenges is the increase in power consumption of the circuit which in turn shortens the service time of battery-powered electronics, and increases the cooling and packaging costs of server systems. On the other hand, with the increasing levels of variability in the characteristics of nanoscale CMOS devices and VLSI interconnects and continued uncertainty in the operating conditions of VLSI circuits, achieving power efficiency and high performance in electronic systems under process, voltage, and temperature (PVT) variations has become a daunting, yet vital, task.;This dissertation investigates power optimization techniques in CMOS VLSI circuits both at circuit level and chip level, while considering the variations in fabrication process or operating conditions of such circuits and systems. First, at circuit level, we present and solve the problem of power-delay optimal design of linear pipeline utilizing soft-edge flip-flops which allow opportunistic time borrowing within the pipeline. We formulate this problem considering statistical delay models that characterize effect of process variation on gate and interconnect delays. To enable further optimization, the soft-edge flip flops are equipped with dynamic error detection (and correction) circuitry to detect and fix the errors that might arise from possible over-clocking.;Second, we propose chip level solutions to the problem of low power design in Chip Multiprocessors (CMPs). We formulate this problem in the form of minimizing total power consumption of CMP while maintaining an average system-level throughput, or maximizing total CMP throughput subject to constraints on power dissipation or die-temperatures. We then propose mathematically rigorous and robust algorithms in the form of dynamic power (and thermal) management solutions to each of these problem formulations. Our proposed algorithms are hierarchical global power management approaches that aim to minimize CMP power consumption (or maximize throughput) by applying mainly dynamic voltage and frequency scaling (DVFS) technique, task assignment and consolidation of processing cores. To tackle the inherent variation and uncertainty of manufacturing parameters and operating conditions in these problems, our solutions adopt a closed loop feedback controller. Additionally, in one problem formulation, we focus primarily on the variations and uncertainty of CMP optimization problem parameters and adopt an algorithm based on partially observable Markovian decision process (POMDP) that uses belief states to determine unobservable system parameters, and then stochastically minimize overall CMP power consumption. Overall, simulation results of our solutions demonstrate promising results for the CMP power/thermal optimization problem.
机译:在当今的IC设计中,关键挑战之一是电路功耗的增加,从而缩短了电池供电电子设备的服务时间,并增加了服务器系统的冷却和封装成本。另一方面,随着纳米级CMOS器件和VLSI互连的特性变化程度的不断提高以及VLSI电路工作条件的持续不确定性,在工艺,电压和温度(PVT)下的电子系统中实现了功率效率和高性能)变型已经成为一项艰巨而又至关重要的任务。本论文研究了CMOS VLSI电路在电路级和芯片级的功率优化技术,同时考虑了此类电路和系统的制造工艺或工作条件的变化。首先,在电路级,我们提出并解决了使用软边触发器的线性管道的功率延迟优化设计问题,该软边触发器允许在管道内借机时机。我们考虑统计延迟模型来表述此问题,该模型描述了工艺变化对栅极和互连延迟的影响。为了实现进一步的优化,软边触发器配备了动态错误检测(和校正)电路,以检测并修复可能因超频而产生的错误。其次,我们针对低功耗问题提出了芯片级解决方案。芯片多处理器(CMP)中的电源设计。我们以在保持平均系统级吞吐量的同时最小化CMP的总功耗的形式,或在受到功耗或芯片温度限制的情况下最大化CMP的总吞吐量的形式来表述此问题。然后,我们以动态电源(和热)管理解决方案的形式,针对这些问题中的每一个提出数学上严格且鲁棒的算法。我们提出的算法是分层的全局电源管理方法,旨在通过主要应用动态电压和频率缩放(DVFS)技术,任务分配和处理内核合并来最小化CMP功耗(或最大化吞吐量)。为了解决这些问题中制造参数和操作条件的固有变化和不确定性,我们的解决方案采用闭环反馈控制器。此外,在一个问题表述中,我们主要关注CMP优化问题参数的变化和不确定性,并采用基于部分可观察的马尔可夫决策过程(POMDP)的算法,该过程使用置信状态来确定不可观察的系统参数,然后随机最小化总体CMP能量消耗。总体而言,我们解决方案的仿真结果证明了CMP功率/热优化问题的有希望的结果。

著录项

  • 作者

    Ghasemazar, Mohammad.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号