首页> 外文OA文献 >Low-Power and Error-Resilient VLSI Circuits and Systems.
【2h】

Low-Power and Error-Resilient VLSI Circuits and Systems.

机译:低功耗和抗误差的VLsI电路和系统。

摘要

Efficient low-power operation is critically important for the success of the next-generation signal processing applications. Device and supply voltage have been continuously scaled to meet a more constrained power envelope, but scaling has created resiliency challenges, including increasing timing faults and soft errors. Our research aims at designing low-power and robust circuits and systems for signal processing by drawing circuit, architecture, and algorithm approaches.To gain an insight into the system faults due to supply voltage reduction, we researched the two primary effects that determine the minimum supply voltage (VMIN) in Intel’s tri-gate CMOS technology, namely process variations and gate-dielectric soft breakdown. We determined that voltage scaling increases the timing window that sequential circuits are vulnerable. Thus, we proposed a new hold-time violation metric to define hold-time VMIN, which has been adopted as a new design standard.Device scaling increases soft errors which affect circuit reliability. Through extensive soft error characterization using two 65nm CMOS test chips, we studied the soft error mechanisms and its dependence on supply voltage and clock frequency. This study laid the foundation of the first 65nm DSP chip design for a NASA spaceflight project. To mitigate such random errors, we proposed a new confidence-driven architecture that effectively enhances the error resiliency of deeply scaled CMOS and post-CMOS circuits. Designing low-power resilient systems can effectively leverage application-specific algorithmic approaches. To explore design opportunities in the algorithmic domain, we demonstrate an application-specific detection and decoding processor for multiple-input multiple-output (MIMO) wireless communication. To enhance the receive error rate for a robust wireless communication, we designed a joint detection and decoding technique by enclosing detection and decoding in an iterative loop to enhance both interference cancellation and error reduction. A proof-of-concept chip design was fabricated for the next-generation 4x4 256QAM MIMO systems. Through algorithm-architecture optimizations and low-power circuit techniques, our design achieves significant improvements in throughput, energy efficiency and error rate, paving the way for future developments in this area.
机译:高效的低功耗操作对于下一代信号处理应用的成功至关重要。器件和电源电压已被不断调整以适应更受约束的功率范围,但是调整带来了弹性挑战,包括时序错误和软错误增加。我们的研究旨在通过绘制电路,架构和算法方法来设计用于信号处理的低功耗,鲁棒性电路和系统。为了深入了解由于电源电压降低而导致的系统故障,我们研究了确定最小值的两个主要影响。英特尔三栅极CMOS技术中的电源电压(VMIN),即工艺变化和栅极电介质软击穿。我们确定电压缩放会增加时序电路易受时序影响的时序窗口。因此,我们提出了一种新的保持时间违反度量标准来定义保持时间VMIN,该度量已被用作新的设计标准。器件缩放增加了影响电路可靠性的软误差。通过使用两个65nm CMOS测试芯片进行广泛的软错误表征,我们研究了软错误机制及其对电源电压和时钟频率的依赖性。该研究为NASA航天项目的第一个65nm DSP芯片设计奠定了基础。为了减轻此类随机错误,我们提出了一种新的置信度驱动的体系结构,该体系结构可有效增强深度缩放的CMOS和后CMOS电路的错误恢复能力。设计低功耗弹性系统可以有效利用特定于应用程序的算法方法。为了探索算法领域的设计机会,我们演示了一种用于多输入多输出(MIMO)无线通信的专用检测和解码处理器。为了提高鲁棒无线通信的接收错误率,我们设计了一种联合检测和解码技术,将检测和解码封装在一个迭代循环中,以增强干扰消除和错误减少能力。为下一代4x4 256QAM MIMO系统制造了概念验证芯片设计。通过算法架构优化和低功耗电路技术,我们的设计在吞吐量,能效和错误率方面实现了重大改进,为该领域的未来发展铺平了道路。

著录项

  • 作者

    Chen Chia-Hsiang;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号