首页> 外文学位 >Magnetic particle based microfluidic separation of cancer cells from whole blood for applications in diagnostic medicine.
【24h】

Magnetic particle based microfluidic separation of cancer cells from whole blood for applications in diagnostic medicine.

机译:从全血中基于磁性微粒的癌细胞微流分离,用于诊断医学。

获取原文
获取原文并翻译 | 示例

摘要

Metastasis, or the process in which tumor cells spread and grow from a primary tumor site to a distant secondary site, is a significant problem in cancer research today. Metastases have also been shown to causes 90% of all cancer-related deaths, i.e. half-a-million people in the US each year. Detection of circulating tumor cells (CTCs) in whole blood demonstrates that there is a connection between the primary tumor and metastases. Therefore, there is a need to create technologies to enable biological CTC studies. This could contribute to understanding of the spreading of cancer and development of various new drugs and strategies.;As means to isolate these rare cells conventional magnet-activated cell separation (MACS) is carried out at the macroscale, with a large external magnet surrounding a flow channel. This technology uses labeling with antibody-coated magnetic microparticles and extraction by attractive magnetic forces in order to effectively isolate the cells of interest. In recent years, there has been tremendous interest in miniaturizing the MACS process to harness the traditional advantages of microfluidic systems, namely the ability to process microliter-size sample volumes economically and portably. However, recent device designs have typically required large permanent magnets or electromagnets.;These approaches have typically followed an empirical, experimental- and device-centric approach. By contrast, this dissertation represents a "bottom-up" effort to design a microfluidic MACS system where physical force balance calculations coupled, with measurements of particle and cell parameters, lead to elements of device design. This design includes external magnet design, flow channel layout, and manipulation of multiphase flows. This approach has led directly to a prototype microfluidics MACS system that overcomes the current limitations on external magnetic field sources. In addition, the designed microfluidic platform achieved throughputs better than the state of the art, and efficiencies and purity comparable or better than the standards in separation today.;Concurrent with the rational optimization an effort to investigate the feasibility using magnetic nanoparticle as a substitute for the microparticle and sub-micron tags currently used in MACS was conducted. Magnetite (Fe3O4) particles were synthesized using traditional thermal decomposition methods, followed by a ligand exchange using the biocompatible surfactant dopamine. Although it was ultimately determined that labeling with magnetic nanoparticles would required applied magnetic fields beyond the constraints of the mathematical optimization, an interesting increase in magnetic moment was observed following this ligand exchange. Additionally, whilst characterizing the synthesized nanoparticles' particle diameter and distribution, a novel quantitative evaluation model of the nanoparticle ensemble was outlined solely from temperature-dependent magnetization measurements. These new insights into the characteristics of nanoparticles may allow for better understanding of the synthesized ensembles for implantation in bio-nanotechnological applications.
机译:转移,或肿瘤细胞从原发性肿瘤部位扩散到远端继发部位的过程,是当今癌症研究中的重要问题。在所有与癌症相关的死亡中,转移也已导致90%的死亡,即在美国每年有50万人。对全血中循环肿瘤细胞(CTC)的检测表明,原发肿瘤与转移之间存在联系。因此,需要创造能够进行生物CTC研究的技术。这可能有助于理解癌症的扩散以及各种新药和新策略的开发。作为分离这些稀有细胞的手段,常规的磁激活细胞分离(MACS)是在宏观范围内进行的,其中较大的外部磁体围绕流道。这项技术使用标记有抗体的磁性微粒进行标记,并通过有吸引力的磁力进行提取,以有效地分离目标细胞。近年来,人们对最小化MACS工艺以利用微流体系统的传统优势有着极大的兴趣,即能够经济,方便地处理微升大小的样品。但是,最近的设备设计通常需要大型永磁体或电磁体。这些方法通常遵循以经验,实验和设备为中心的方法。相比之下,本论文代表了“自下而上”的设计微流体MACS系统的工作,在该系统中,物理力平衡计算与颗粒和细胞参数的测量相结合,构成了设备设计的要素。该设计包括外部磁体设计,流道布局和多相流控制。这种方法直接导致了一种原型微流控MACS系统,该系统克服了当前对外部磁场源的限制。此外,设计的微流体平台实现了比现有技术更好的通量,并且效率和纯度可与当今的分离标准相媲美或更好。;在合理优化的同时,努力研究使用磁性纳米粒子替代纳米粒子的可行性。进行了目前在MACS中使用的微粒和亚微米标签。使用传统的热分解方法合成磁铁矿(Fe3O4)颗粒,然后使用生物相容性表面活性剂多巴胺进行配体交换。尽管最终确定用磁性纳米颗粒标记将需要施加的磁场超出数学优化限制,但在这种配体交换后,磁矩出现了令人感兴趣的增加。此外,在表征合成纳米粒子的粒径和分布的同时,仅从温度相关的磁化强度测量中概述了纳米粒子整体的新型定量评估模型。这些对纳米颗粒特性的新见解可以使人们更好地理解用于生物纳米技术应用的合成体。

著录项

  • 作者

    Plouffe, Brian Dennis.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Biomedical.;Health Sciences Medicine and Surgery.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号