> Magnetic separation of cells has bee'/> Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system
首页> 外文期刊>Biotechnology and Bioengineering >Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system
【24h】

Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system

机译:模拟/有限元分析与微流体磁性沉积系统分离内在磁性孢子和红细胞的相关性

获取原文
获取原文并翻译 | 示例
           

摘要

> Magnetic separation of cells has been, and continues to be, widely used in a variety of applications, ranging from healthcare diagnostics to detection of food contamination. Typically, these technologies require cells labeled with antibody magnetic particle conjugate and a high magnetic energy gradient created in the flow containing the labeled cells (i.e., a column packed with magnetically inducible material), or dense packing of magnetic particles next to the flow cell. Such designs, while creating high magnetic energy gradients, are not amenable to easy, highly detailed, mathematic characterization. Our laboratories have been characterizing and developing analysis and separation technology that can be used on intrinsically magnetic cells or spores which are typically orders of magnitude weaker than typically immunomagnetically labeled cells. One such separation system is magnetic deposition microscopy (MDM) which not only separates cells, but deposits them in specific locations on slides for further microscopic analysis. In this study, the MDM system has been further characterized, using finite element and computational fluid mechanics software, and separation performance predicted, using a model which combines: 1) the distribution of the intrinsic magnetophoretic mobility of the cells (spores); 2) the fluid flow within the separation device; and 3) accurate maps of the values of the magnetic field (max 2.27?T), and magnetic energy gradient (max of 4.41?T 2 /mm) within the system. Guided by this model, experimental studies indicated that greater than 95% of the intrinsically magnetic Bacillus spores can be separated with the MDM system. Further, this model allows analysis of cell trajectories which can assist in the design of higher through
机译:
>细胞的磁性分离已经,并且继续广泛用于各种应用中,从医疗保健诊断到检测食物污染。通常,这些技术需要用抗体磁性颗粒缀合物标记的细胞,并且在包含标记的细胞的流动中产生的高磁能梯度(即,用磁性诱导材料包装的柱),或者在流动池旁边的磁性颗粒填充。这种设计在创造高磁能梯度的同时,不适合容易,高度详细的数学表征。我们的实验室已经表征和开发了分析和分离技术,可以用于内在磁性细胞或孢子上,这些磁性细胞或孢子通常比通常是免疫磁标记的细胞弱的数量级。一种这样的分离系统是磁性沉积显微镜(MDM),其不仅将电池分离,而且在滑动的特定位置沉积它们以进行进一步的微观分析。在本研究中,MDM系统进一步使用有限元和计算流体力学软件,并使用结合的型号预测的分离性能:1)细胞(孢子)的固有磁性迁移率的分布; 2)分离装置内的流体流动; 3)系统内的磁场值(最大2.27ΩT)的值的精确图(最大2.27℃)和系统内的磁能梯度(最多4.41Ωth> 2 2 2 / mm)。通过该模型引导,实验研究表明,大于95%的内在磁性杆状芽孢杆菌和孢子可以用MDM系统分离。此外,该模型允许分析可以帮助设计更高的细胞轨迹

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号