首页> 外文学位 >Unsteady aerodynamic analysis of flows in multistage turbomachinery using the time-linearized Navier-Stokes equations.
【24h】

Unsteady aerodynamic analysis of flows in multistage turbomachinery using the time-linearized Navier-Stokes equations.

机译:使用时间线性化的Navier-Stokes方程对多级涡轮机械中的流动进行非定常空气动力学分析。

获取原文
获取原文并翻译 | 示例

摘要

An efficient and accurate computational method for predicting unsteady flows in multistage turbomachinery is presented. Particularly, a method is developed to solve the flutter and forced response problems accounting for blade row coupling. The aerodynamic blade row coupling is provided by propagation of waves in the working fluid. A set of travelling waves is represented by multiple unsteady solutions for each blade row. Each solution has a particular frequency and interblade phase angle defined by the scattering and frequency shifting mechanisms. The waves are allowed to propagate between the rows by exchanging the information between various unsteady solutions at the interface boundaries. Only a finite number of unsteady solutions must be retained in the model to compute accurately the unsteady aerodynamic response. The unsteady solutions are defined by solving a system of time-linearized Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras one-equation turbulence model. After linearization, the resulting system of equations consists of the non-linear steady equations and linear unsteady equations with variable coefficients. The equations are discretized on a deforming, multi-block grid and advanced in the pseudo-time domain using a finite-volume Lax-Wendroff integration technique. Using the circumferential periodicity only one blade-to-blade passage is required to model each blade row. Various acceleration techniques such as multi-grid, local time-stepping and smoothing are employed to improve the convergence rate. The steady flow solver is validated against available experimental data. Results from the unsteady flow solver are compared with a semi-analytical method for the flutter problem. The analysis of the flutter problem for a front one-and-half stage of a modern axial compressor demonstrated the capability of the method of predicting the unsteady loads on blades with complex realistic geometry. The unsteady flow calculations in the forced response problem revealed the importance of the first two blade passing frequencies for computing the unsteady load on blades in a downstream blade row. The present time-linearized method is several orders of magnitude faster than conventional non-linear time-marching methods.
机译:提出了一种高效,准确的多级涡轮机械非定常流动预测方法。特别地,开发了一种方法以解决由于叶片行联接而引起的颤动和强制响应问题。通过在工作流体中传播波来提供气动叶片行联接器。一组行波由每个叶片行的多个非定常解表示。每个解决方案都有一个特定的频率和叶片间相角,由散射和频移机制定义。通过在界面边界的各种非定常解之间交换信息,允许波在行之间传播。只有有限数量的非稳态解必须保留在模型中,才能准确地计算非稳态气动响应。通过使用Spalart-Allmaras一方程湍流模型求解时间线性化的雷诺平均Navier-Stokes方程组,定义了非定常解。线性化之后,所得的方程组由具有可变系数的非线性稳态方程和线性非稳态方程组成。这些方程在一个变形的多块网格上离散化,并使用有限体积的Lax-Wendroff积分技术在伪时域中进行扩展。使用圆周周期性,只需一个叶片到叶片的通道就可以对每一排叶片进行建模。采用多种加速技术,例如多网格,局部时间步长和平滑,以提高收敛速度。稳定流求解器已根据可用的实验数据进行了验证。将非稳态流动求解器的结果与颤振问题的半解析方法进行了比较。对现代轴流压缩机前半段颤振问题的分析表明,该方法具有预测具有复杂实际几何形状的叶片上的非稳态载荷的能力。强迫响应问题中的非稳态流动计算揭示了前两个叶片通过频率对于计算下游叶片排中叶片上的非稳态载荷的重要性。当前的时间线性化方法比常规的非线性时间前进方法快几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号