首页> 外文学位 >Limits of thin film cooling in microgap channels.
【24h】

Limits of thin film cooling in microgap channels.

机译:微间隙通道中薄膜冷却的限制。

获取原文
获取原文并翻译 | 示例

摘要

The forced flow of dielectric liquids, undergoing phase change while flowing in a narrow channel, is a promising candidate for the thermal management of advanced semiconductor devices. Such channels may be created by the spacing between silicon ribs in a microchannel cooler, between stacked silicon chips in a three-dimensional logic, RF, or heterogeneous microsystem, narrowly-spaced organic or ceramic substrates, or between a chip and a non-silicon polymer cover in a microgap cooler.;These microgap configurations provide direct contact -- and hence cooling -- between a chemically-inert, dielectric liquid and the back surface of an active electronic component, thus eliminating the significant thermal resistance associated with a Thermal Interface Material (TIM) or the solid-solid contact resulting from the attachment of a microchannel cold plate to the chip.;This dissertation explores the physics underpinning two-phase flow in miniature channels, through an extensive literature survey, and employs analytical, numerical, and experimental techniques to determine the thermal transport phenomena in microgap channels, with emphasis on the thermal limits of thin film heat transfer in annular flow.;The applicability of several flow regime mapping methodologies has been examined. The predictions of these mapping methodologies have been compared to the visual observations of two-phase flow in microtubes and microchannels. The axial variation of two-phase heat transfer coefficients with local vapor qualities is reported, and the association of this variation with the dominant flow regime is discussed. The measured two-phase flow heat transfer coefficients are then sorted according to the dominant flow regime, and compared to the predictions of classical heat transfer correlations.;Two-phase flow experiments were performed in a microgap cooler with the flow of HFE7100 and FC-87. The microgap cooler is 125 mm long, 14 mm wide, and was operated with three distinct gap sizes: 100, 200, and 500 micron. An instrumented Intel thermal test vehicle (TTV) flip-chip mounted via a BGA on an organic substrate, and equipped with 9 pre-calibrated temperature sensors, was used as the heated section of the microgap channel. Pressure drop across the channel, fluid inlet and exit temperature, and wall temperature were measured.;Using commercial software, an "inverse" numerical technique was developed to identify the local heat flux and heat transfer coefficient. Local Annular heat transfer coefficients, for FC-87 flowing in the 100 micron channel, were found to display elements of the M-shaped variation with flow quality and reached a maximum value of 15 kW/m2K.
机译:当在狭窄的通道中流动时经历相变的介电液体的强制流动,是用于先进半导体器件的热管理的有希望的候选者。可以通过微通道冷却器中的硅肋之间的间距,三维逻辑,RF或异构微系统中的堆叠硅芯片之间,间距狭窄的有机或陶瓷衬底之间,或芯片与非硅之间的间距来创建此类通道这些微间隙配置可在化学惰性介电液体和有源电子元件的背面之间直接接触-从而进行冷却-从而消除了与热界面相关的显着热阻材料(TIM)或由于微通道冷板与芯片的附着而产生的固-固接触。本论文通过广泛的文献研究,探索了支持微通道中两相流动的物理原理,并采用了分析,数值,和实验技术来确定微间隙通道中的热传输现象,重点是薄膜热的热极限环流中的扩散;检验了几种流态映射方法学的适用性。这些映射方法的预测结果已与微管和微通道中两相流的视觉观察结果进行了比较。报道了具有局部蒸气质量的两相传热系数的轴向变化,并讨论了这种变化与主导流动状态的关系。然后根据主导流态对测得的两相流传热系数进行排序,并与经典传热相关性的预测进行比较。;在微间隙冷却器中以HFE7100和FC- 87。微间隙冷却器的长度为125毫米,宽为14毫米,并以三种不同的间隙尺寸运行:100、200和500微米。经由BGA安装在有机基板上的仪器化英特尔热测试车(TTV)倒装芯片,并配备9个预先校准的温度传感器,用作微间隙通道的加热部分。测量通道上的压降,流体入口和出口温度以及壁温。;使用商业软件,开发了“反”数值技术来识别局部热通量和传热系数。发现在100微米通道中流动的FC-87的局部环形传热系数显示出流动质量呈M形变化的元素,并且最大值达到15 kW / m2K。

著录项

  • 作者

    Rahim, Emil.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号