首页> 外文学位 >Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory.
【24h】

Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory.

机译:量子理论的熵动力学方法中的广义伽利略变换和测量问题。

获取原文
获取原文并翻译 | 示例

摘要

Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective.;We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities.;We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review.;After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information.;We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in quantum theory. Furthermore, we show that the Born rule need not be postulated, but can be derived in EQD. Finally, we show how the wave function can be updated by the ME method as the phase is constructed purely in terms of probabilities.
机译:量子力学是一个非常成功且精确的物理理论,但是自其诞生以来,它一直遭受着许多概念上的困难。本论文的主要主题是熵量子动力学理论(EQD),它试图通过从信息的角度解释量子理论来避免这些概念性问题。我们首先回顾一下考克斯在将概率论描述为一种合理的方法和方法上的工作。持续量化不确定性。然后,我们讨论如何根据贝叶斯定理或最大熵的扩展方法(ME)更新概率。在讨论之后,我们回顾了Caticha和Giffin的工作,这些工作表明贝叶斯定理是ME的特例。这一重要结果表明,ME方法是更新概率的通用方法。;然后,在讨论Caticha从熵动力学方法推导量子理论的工作之前,我们先回顾了量子力学中的一些激励性难题,从而得出了结论。介绍后,我们从信息的角度发展了对称和变换的概念。主要结果是制定了对称条件,任何变换都必须满足该条件才能在EQD中成为对称。然后,我们将这个条件应用于扩展的伽利略变换。此转换具有特殊和广义相对论的特征,因此很有趣。变换产生了由等价信息产生的引力。;我们在讨论量子力学中的测量问题的基础上结束了本论文。在发展熵测量理论之前,我们将讨论在标准量子力学方法中出现的困难。在熵动力学中,位置是唯一可观察到的。我们展示了建立在这一可观察论之上的理论如何解释量子理论中存在的众多测量结果。此外,我们表明,无需假定Born规则,但可以在EQD中导出。最后,我们展示了如何通过ME方法更新波动函数,因为仅根据概率来构造相位。

著录项

  • 作者

    Johnson, David T.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Physics Quantum.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号