首页> 外文学位 >Improving face recognition performance using a hierarchical Bayesian model.
【24h】

Improving face recognition performance using a hierarchical Bayesian model.

机译:使用分层贝叶斯模型提高人脸识别性能。

获取原文
获取原文并翻译 | 示例

摘要

Over the past two decades, face recognition research has shot to the forefront due to its increased demand in security and commercial applications. Many facial feature extraction techniques for the purpose of recognition have been developed, some of which have also been successfully installed and used. Principal Component Analysis (PCA), also popularly called as Eigenfaces has been used successfully and also is a de facto standard. Linear generative models such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) find a set of basis images and represent the faces as a linear combination of these basis functions. These models make certain assumptions about the data which limit the type of structure they can capture. This thesis is mainly based on the hierarchical Bayesian model developed by Yan Karklin of Carnegie Mellon University. His research was mainly focused on natural signals like natural images and speech signals in which he showed that for such signals, latent variables exhibit residual dependencies and non-stationary statistics. He built his model atop ICA and this hierarchical model could capture more abstract and invariant properties of the data. We apply the same hierarchical model on facial images to extract features which can result in an improved recognition performance over already existing baseline approaches. We use Kernelized Fisher Discriminant Analysis (KFLD) as our baseline as it is superior to PCA in a way that it produces well separated classes even under variations in facial expression and lighting. We conducted extensive experiments on the GreyFERET database and tested the performance on test sets with varying facial expressions. The results demonstrate the increase in performance that was expected.
机译:在过去的二十年中,由于对安全性和商业应用的需求不断增长,面部识别研究已经走到了最前沿。已经开发了许多用于识别目的的面部特征提取技术,其中一些也已经成功安装和使用。主成分分析(PCA)(也称为Eigenfaces)已成功使用,并且也是事实上的标准。线性生成模型(例如主成分分析(PCA)和独立成分分析(ICA))找到一组基础图像,并将这些面孔表示为这些基础函数的线性组合。这些模型对数据进行了某些假设,这些假设限制了它们可以捕获的结构类型。本文主要基于卡内基梅隆大学的严·卡克林(Yan Karklin)开发的分层贝叶斯模型。他的研究主要集中于自然信号,例如自然图像和语音信号,其中他表明,对于此类信号,潜在变量表现出残差依赖性和非平稳统计量。他在ICA之上构建了模型,该层次模型可以捕获数据的更多抽象和不变属性。我们在面部图像上应用相同的分层模型以提取特征,这可以导致与现有基线方法相比具有更高的识别性能。我们使用Kernelized Fisher判别分析(KFLD)作为基准,因为它优于PCA,即使在面部表情和光照变化的情况下,它也能产生良好分离的类。我们在GreyFERET数据库上进行了广泛的实验,并测试了具有不同面部表情的测试集的性能。结果证明了预期的性能提高。

著录项

  • 作者

    Shikaripur Nadig, Ashwini.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Computer.
  • 学位 M.S.
  • 年度 2010
  • 页码 47 p.
  • 总页数 47
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号