首页> 外文学位 >A new spine interbody fusion system: Integrating topology optimized biodegradable interbody fusion cages with cell-based and ex vivo gene therapy.
【24h】

A new spine interbody fusion system: Integrating topology optimized biodegradable interbody fusion cages with cell-based and ex vivo gene therapy.

机译:一种新的脊椎椎间融合系统:将拓扑优化的可生物降解的椎间融合器与基于细胞和离体基因治疗相结合。

获取原文
获取原文并翻译 | 示例

摘要

Spine injuries and pathologies including disc degeneration, stenosis, spondylolysis, and/or spondylolisthesis represent more than one-half of the musculoskeletal impairments reported in the United States. While interbody fusion relieves pain by eliminating spinal instability, complications associated with conventional metallic cage, including implant migration or failure, imaging artifact and stress shielding, and limited bone grafting significantly reduce the efficacy of the interbody fusion. In this work, a novel interbody fusion system is proposed as an alternative by integrating the design principle of topology optimization, the controlled load transfer by an osteoconductive biodegradable polymer composite, and cell-based and gene therapy.; The integrated local-global topology optimization method developed in this thesis creates a cage design that addresses limitations of conventional cage designs by providing optimal distribution of material under applied force to satisfy the objective of maximal stiffness with desired porosity, under constraints of design criteria, concurrently enhancing stability, and providing sufficient porosity for biofactor delivery and mechanical tissue stimulation. More limited displacement with the range of 0.005 to 0.007 mm reduces the incidence of early retropulsion along anterior-posterior (AP) axis compared to the threaded design with 0 to 0.1 mm in the AP direction and the controlled strain less than 8% provides favorable stimulation for appositional bone formation at the bone implant interface. Lower contact stress on vertebrae reduces the risk of localized deformation and cage subsidence while increasing strain energy transfer to ingrown bone tissue reduces the risk of stress shielding. The integrated topology optimization accounting for degradation can be also incorporated in the design for biodegradable/bioabsorbable implants de novo for specific anatomic regions and mechanical loading regimens. This degradation topology optimization creates designs that retain stiffness in the range of trabecular bone through bulk erosion time (240.58 +/- 39.16 MPa; p 0.05).; Biofactor delivery from topology optimized poly(propylene fumarate)/beta-tricalcium phosphate degrading scaffolds was demonstrated in an in vivo immunocompromised murine model. Rapid osteogenesis via BMP-7 transduced cell delivery combined with the designed internal architecture showed that bone formation could be led along the designed contours and the new construct could retain the stiffness at a plateau level of 60 MPa to perform mechanical functions over the implantation time. The results from this study demonstrate the hybrid scaffold/tissue construct could maintain adequate mechanical properties, indicating that physiological forces can be borne by the regenerate bone tissue as the scaffold degrades and loses load carrying capability. These functional results suggest that the integration of optimal scaffold design, fabricated degradable PPF/beta-TCP scaffolds and cell/gene therapy can fulfill the paradigm of functional bone tissue engineering. Therefore, the development of the proposed system for interbody fusion in this work will provide more flexibility for the future spinal fusion approaches and provide a basis for general functional bone tissue engineering.
机译:在美国,脊柱损伤和包括椎间盘退变,狭窄,脊椎裂和/或脊椎滑脱在内的病理占肌肉骨骼损伤的一半以上。虽然椎间融合可以通过消除脊柱不稳来减轻疼痛,但与常规金属笼相关的并发症(包括植入物迁移或衰竭,成像伪影和应力屏蔽以及有限的骨移植)显着降低了椎间融合的功效。在这项工作中,通过整合拓扑优化的设计原理,骨传导生物可降解聚合物复合材料控制的负荷转移以及基于细胞和基因的治疗,提出了一种新型的椎间融合系统作为替代方案。本文开发的集成局部-全局拓扑​​优化方法创建了一种笼式设计,该解决方案通过在施加设计力的条件下同时在施加力的情况下提供材料的最佳分布来满足常规笼式设计的局限性,从而满足具有所需孔隙率的最大刚度的目标,同时满足设计标准增强稳定性,并为生物因子传递和机械组织刺激提供足够的孔隙率。与在AP方向上0到0.1 mm的螺纹设计相比,在0.005到0.007 mm范围内的更有限的位移减少了沿前后(AP)轴的早期反冲的发生,并且受控应变小于8%提供了良好的刺激用于在骨植入物界面处并发骨形成。椎骨上较低的接触应力降低了局部变形和笼子下陷的风险,同时增加了向内生骨组织的应变能转移,降低了应力屏蔽的风险。考虑到降解的集成拓扑优化还可以从头开始用于特定解剖区域和机械加载方案的可生物降解/可生物吸收植入物的设计中。这种降解拓扑优化可创建通过整个侵蚀时间(240.58 +/- 39.16 MPa; p <0.05)在小梁骨范围内保持刚度的设计。在体内免疫受损的小鼠模型中证明了拓扑优化的聚富马酸丙二酯/β-磷酸三钙降解支架的生物因子传递。通过BMP-7转导的细胞递送与设计的内部架构相结合的快速成骨作用表明,可以沿着设计的轮廓引导骨形成,并且新构造可以将硬度保持在60 MPa的平稳水平,以在植入时间内完成机械功能。这项研究的结果表明,混合型脚手架/组织构建体可以保持足够的机械性能,表明随着脚手架降解并失去承载能力,再生骨组织可以承担生理力。这些功能结果表明,最佳支架设计,可制造的可降解PPF /β-TCP支架和细胞/基因疗法的整合可以满足功能性骨组织工程的范式。因此,在这项工作中提出的椎间融合系统的发展将为未来的脊柱融合方法提供更大的灵活性,并为一般功能性骨组织工程提供基础。

著录项

  • 作者

    Lin, Chia-Ying.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.; Biology Genetics.; Health Sciences Medicine and Surgery.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;遗传学;细胞生物学;
  • 关键词

  • 入库时间 2022-08-17 11:43:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号