首页> 外文期刊>Journal of biomechanical engineering. >Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering
【24h】

Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering

机译:多孔可生物降解腰椎椎间融合器的设计和制造,采用激光烧结的整体局部拓扑优化

获取原文
获取原文并翻译 | 示例
       

摘要

Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of non-degradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyl-apatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.
机译:可生物降解的笼子因其在涉及椎间融合的脊柱手术中的使用受到越来越多的关注,以解决与不可降解的笼子的使用相关的并发症,例如应力屏蔽和长期异物反应。然而,与永久材料相比相对较弱的初始材料强度以及由于降解而导致的随后降低可能是有问题的。为了为临床前大型动物研究设计一个多孔的可生物降解的椎间融合器,使其能够承受生理负荷,同时具有足够的相互连接的孔隙度以进行骨桥和融合,我们开发了一种多尺度拓扑优化技术。宏观上的拓扑优化可提供确保机械强度的最佳结构布局,而替代宏观材料布局的最佳设计微观结构可确保最大的渗透性。使用混合有羟基磷灰石的聚(ε-己内酯)的固态,自由形式制造来制造优化设计的笼子。压缩测试表明,优化的融合器固定架的屈服强度是典型的人类腰椎负荷的两倍。计算分析进一步证实了人类腰椎内的机械完整性,尽管孔结构局部承受的应力大于屈服应力。当将可生物降解的材料用于融合笼时,可以利用这种优化技术来平衡承载,应力屏蔽和互连孔隙率的复杂要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号