首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Porous Biodegradable Lumbar Interbody Fusion Cage Design andFabrication Using Integrated Global-Local Topology Optimization With LaserSintering
【2h】

Porous Biodegradable Lumbar Interbody Fusion Cage Design andFabrication Using Integrated Global-Local Topology Optimization With LaserSintering

机译:多孔可生物降解腰椎椎间融合器的设计与开发使用集成的全局-局部拓扑优化与激光制造烧结

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structurelocally underwent higher stress than yield stress. This optimization techniquemay be utilized to balance the complex requirements of load-bearing, stressshielding, and interconnected porosity when using biodegradable materials forfusion cages.
机译:可生物降解的笼子在涉及椎间融合的脊柱手术中的使用受到越来越多的关注,以解决与不可降解的笼子的使用相关的并发症,例如应力屏蔽和长期异物反应。然而,与永久材料相比相对较弱的初始材料强度以及由于降解而导致的随后降低可能是有问题的。为了为临床前大型动物研究设计一种多孔的可生物降解的椎间融合器,以使其能够承受生理负荷,同时具有足够的相互连接的孔隙度以进行骨桥和融合,我们开发了一种多尺度拓扑优化技术。宏观上的拓扑优化可提供确保机械强度的最佳结构布局,而替代宏观材料布局的最佳设计微观结构可确保最大的渗透性。使用混合有羟基磷灰石的聚(ε-己内酯)的固态,自由形式制造来制造优化设计的笼子。压缩测试表明,优化的融合器固定架的屈服强度是典型的人类腰椎负荷的两倍。计算分析进一步证实了人腰椎内的机械完整性,尽管其孔结构局部承受的应力高于屈服应力。这种优化技术可以用来平衡承重,压力的复杂要求使用可生物降解的材料进行保护时,具有屏蔽性和相互连接的孔隙率融合笼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号