首页> 外文学位 >Molecular physiology of p21-activated kinases in platelets.
【24h】

Molecular physiology of p21-activated kinases in platelets.

机译:血小板中p21活化激酶的分子生理学。

获取原文
获取原文并翻译 | 示例

摘要

Platelets are involved in many processes ranging from fighting microbial infections and triggering inflammation to promoting tumor angiogenesis and metastasis. Nevertheless, the primary physiological function of platelets is to act as essential mediators in maintaining homeostasis of the circulatory system by forming hemostatic thrombi that prevent blood loss and maintain vascular integrity.;The p21-activated kinases (PAKs) are a family of serine/threonine kinases known to be the downstream effectors of GTPases, Cdc42 and Rac1. PAKs are the key regulators of actin polymerization and have been shown to play an important role in platelet spreading and aggregation in thrombin-stimulated platelets. Whereas several signaling cascades downstream of heterotrimeric G proteins that regulate platelet functions have been characterized, little attention is paid towards the signaling cascades that involve small G proteins effectors such as PAK. A few studies have characterized the role of PAK, downstream of the Rho family of small G proteins, in outside-in signaling, but its role in the regulation of platelet functional responses by inside-out signaling events have not been elucidated. PAK is reported to interact with numerous proteins including Akt, PDK1 and PI3-kinase in different cell lines. PAK's function as a scaffolding protein expands the role of this protein in cellular functions. Although PAK is known to have non-catalytic scaffolding functions and is shown to associate and translocate Akt in other cell systems, the catalytic and possible non-catalytic scaffolding role in platelet functions are not clearly defined. In this dissertation we propose to elucidate the scaffolding function of PAK and also its role platelet functional responses using molecular genetics approach. Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated upon translocation to the membrane through Gi signaling pathways by a PIP3-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared to ADP in platelets. In this study, we investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor (PAR) agonists caused rapid translocation of Akt to the membrane, whereas Akt phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq signaling pathways. Interestingly, PI3-kinase inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3-kinase/PIP3/ Gi-independent mechanism. An Akt scaffolding protein, PAK, translocates to the membrane upon stimulation with PAR agonists in a Gq-dependent manner with the kinetics of translocation similar to that of Akt. Co-immunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a role of PAK in Akt translocation. These results show for the first time an important role of the Gq signaling pathway in mediating Akt translocation to the membrane in a novel Gi/PI3-kinase/PIP3-independent mechanism.;PAK contains an autoinhibitory domain that suppresses the catalytic activity of its kinase domain. This autoregulatory domain found within PAK kinase provides a unique target for chemical inhibitors. IPA3, a small molecule allosteric inhibitor of PAK activation, binds covalently to the PAK regulatory domain and prevents binding to its upstream activators. IPA3 has been used in various cells, including platelets, to evaluate the role of PAK in signaling. Herein, we investigated the specificity and selectivity of IPA3 as a PAK inhibitor in the human platelets. Stimulation of platelets pretreated with IPA3 using a PAR-4 or GPV1 agonist resulted in a concentration dependent inhibition of aggregation, as was suggested by earlier studies. Interestingly, we found that incubation of washed human platelets with IPA3 leads to a non-specific increase in phosphorylation of several proteins in absence of any agonist. However, this phosphorylation is not sufficient for aggregation of platelets by IPA3. In summary, we demonstrate that IPA3 by itself can phosphorylate several proteins in human platelets and thus its use is not an appropriate strategy for investigating PAK function in platelets.;The studies proposed in my thesis will provide further insights into the molecular mechanisms of platelet activation and hence provide a basis for development of PAK as novel antithrombotic therapeutic targets. Furthermore, PAK inhibitors are currently being developed by pharmaceutical companies to treat malignancies, although this enzyme is ubiquitously expressed in the body. A thorough understanding of the role of PAK in platelets can predict the effect of these drugs on hemostatic functions, which helps during clinical trials. In the future, targeted inhibition of signaling molecules in platelets could be developed and that would solely target platelet signaling pathways. (Abstract shortened by ProQuest.).
机译:血小板参与许多过程,从抵抗微生物感染和引发炎症到促进肿瘤血管生成和转移。然而,血小板的主要生理功能是通过形成止血栓来预防血液流失并维持血管完整性,从而在维持循环系统稳态中起重要的介体作用。p21激活激酶(PAK)是丝氨酸/苏氨酸家族激酶是已知的GTPases,Cdc42和Rac1的下游效应子。 PAK是肌动蛋白聚合的关键调节剂,并已显示在凝血酶刺激的血小板中血小板扩散和聚集中起重要作用。尽管已经表征了调节血小板功能的异三聚体G蛋白下游的几个信号级联,但是很少关注涉及小G蛋白效应子(如PAK)的信号级联。一些研究已经表征了小G蛋白Rho家族下游的PAK在由内而外的信号传导中的作用,但尚未阐明其在由内而外的信号事件对血小板功能反应的调节中的作用。据报道,PAK与许多蛋白在不同细胞系中相互作用,包括Akt,PDK1和PI3激酶。 PAK作为支架蛋白的功能扩展了该蛋白在细胞功能中的作用。尽管已知PAK具有非催化支架功能,并显示出其在其他细胞系统中与Akt缔合和转运,但对血小板功能中的催化作用和可能的非催化支架作用尚无明确定义。本文提出使用分子遗传学方法阐明PAK的脚手架功能及其对血小板功能的作用。 Akt是调节血小板聚集的重要信号分子。通过PIP3依赖性机制,通过Gi信号通路易位至膜后,Akt会被磷酸化。但是,与血小板中的ADP相比,Akt更容易被凝血酶磷酸化。在这项研究中,我们调查了Akt易位的机制,作为对此差异的可能解释。蛋白酶激活受体(PAR)激动剂刺激洗涤后的人血小板引起Akt迅速转移到膜上,而Akt磷酸化发生在后来。在存在Gq选择性抑制剂或缺乏Gq的鼠类血小板中,Akt的转运被取消,这表明Akt的转运受到Gq信号通路下游的调节。有趣的是,PI3激酶抑制剂或P2Y12拮抗剂废除了Akt磷酸化,而不会影响Akt向膜的易位,这表明Akt易位是通过PI3激酶/ PIP3 / Gi独立机制发生的。 Akt支架蛋白PAK在被PAR激动剂刺激后以Gq依赖性方式转运到膜上,其转运动力学类似于Akt。免疫共沉淀研究显示PAK和Akt组成型相关,表明PAK在Akt易位中的作用。这些结果首次显示了Gq信号通路在介导Akt易位到膜的一种新的Gi / PI3-激酶/ PIP3独立机制中的重要作用。; PAK包含一个抑制其激酶催化活性的自抑制域域。在PAK激酶中发现的这种自动调节域为化学抑制剂提供了独特的靶标。 IPA3是PAK激活的小分子变构抑制剂,与PAK调节域共价结合,并防止与其上游激活剂结合。 IPA3已用于包括血小板在内的各种细胞中,以评估PAK在信号传导中的作用。在本文中,我们研究了IPA3作为人血小板中PAK抑制剂的特异性和选择性。如较早的研究表明,使用PAR-4或GPV1激动剂对IPA3预处理的血小板进行刺激会导致浓度依赖性的聚集抑制。有趣的是,我们发现将洗涤过的人血小板与IPA3孵育会导致在不存在任何激动剂的情况下几种蛋白质的磷酸化发生非特异性增加。但是,这种磷酸化不足以使IPA3聚集血小板。总而言之,我们证明了IPA3本身可以使人血小板中的几种蛋白质磷酸化,因此其使用不是研究血小板中PAK功能的合适策略。;本文中提出的研究将为进一步了解血小板活化的分子机制提供理论依据。因此,为开发PAK作为新型抗血栓治疗靶标提供了基础。此外,尽管该酶在体内普遍表达,但制药公司目前正在开发PAK抑制剂以治疗恶性肿瘤。深入了解PAK在血小板中的作用可以预测这些药物对止血功能的作用,这有助于临床试验。将来,可以开发靶向抑制血小板中信号分子的方法,而这种抑制将仅靶向血小板信号通路。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Badolia, Rachit.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Physiology.;Biochemistry.;Molecular biology.;Cellular biology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号