首页> 外文OA文献 >Functions of Drosophila Pak (p21-activated kinase) in Morphogenesis: A Mechanistic Model based on Cellular, Molecular, and Genetic Studies
【2h】

Functions of Drosophila Pak (p21-activated kinase) in Morphogenesis: A Mechanistic Model based on Cellular, Molecular, and Genetic Studies

机译:果蝇Pak(p21激活激酶)在形态发生中的功能:基于细胞,分子和遗传研究的机制模型。

摘要

Intellectual disability (ID) is a common phenotype of brain-development disorders and is heterogeneous in etiology with numerous genetic causes. PAK3 is one gene with multiple mutations causing ID. Affected individuals have microcephaly, and other brain-structure defects have been reported. Additionally, PAK3 is in a genetic network with eighteen other genes whose mutations cause ID, suggesting the molecular mechanisms by which PAK3 regulates of cognitive function may be shared by other genetic ID disorders. Studies in rodent models have shown that the orthologs of PAK3 are important for regulating dendrite spine morphology and postnatal brain size. In Drosophila melanogaster, the morphological processes of oogenesis, dorsal closure during embryogenesis, and salivary gland-lumen formation require Pak, the Drosophila ortholog of PAK3. Additionally, Pak is important for development of the subsynaptic reticulum of the neuromuscular junction, sensory axon pathfinding and terminal arborization in the Drosophila central nervous system (CNS). However, the role of Pak in mushroom body (MB) structure and intrinsic neurite arbor morphogenesis, as well as details of the underlying cellular and molecular mechanisms are unknown. To address this gap, I used Drosophila models of PAK3 gene mutations, Pak, and a combination of immunostaining, primary cell culture, and genetic interaction studies to elucidate these mechanisms. I performed a detailed characterization of the previously reported adult Pak phenotypes of decreased survival as well as leg and wing morphology. I found that decreased survival is a low-penetrance phenotype that is enhanced by chromosomes from the same mutagenesis. Defects of the adult wing include folding and misalignment between the layers, blisters, and missing or partial cross veins. The Pak-mutant legs are short and often misdirected in the pupal case with morphological defects in the shape of the leg segments themselves. The mushroom bodies are important insect learning and memory brain structures whose lobes are composed of axon bundles with individual axons bifurcating to form the α and β lobes. Mutations in Pak cause defects in the length, thickness, and direction of the MB α and β lobes. These defects increase in severity during metamorphosis, when neurogenesis and differentiation of these structures occur, suggesting that Pak stabilizes the branches of the α/β mushroom body neurons. Pak-mutant cultured neurons have reduced neurite arbor size with defects in neurite caliber. Initial outgrowth was normal, followed by a decrease in neurite branch number, again supporting the role of Pak in neurite-branch stability. There are defects in the cytoskeleton in growth cones at six hours post-plating as well as in neurons after three days in vitro. The Pak-mutant phenotype severity depends on the phosphorylation status of myosin regulatory light chain, supporting the mechanistic hypothesis that Pak regulates neurite-branch stability by inhibiting myosin light chain kinase. The neuronal phenotype of decreased branch stability suggests a mechanism of excessive retraction as the cellular pathogenesis underlying PAK3 mutation-associated brain disorders. I used western blotting to characterize the protein products of four nonsense mutations in Drosophila Pak to interpret genotype-phenotype relationships. Each allele has molecularly unique consequences: Pak¹¹, stop-codon read through and truncated protein; Pak¹⁶, no read through, but truncated protein; Pak⁶, read through with no truncated protein; Pak ¹⁴, neither readthrough nor truncated protein. Truncated proteins produced by Pak¹¹ and Pak¹⁶ alleles retained partial function for survival, wing blistering, leg morphology, and neurite length. Conversely, truncated protein increased the severity of the mushroom body defects. Truncated proteins have no effect on neuron branch number, wing folding, or vein defects. Together, these results demonstrate a role of Pak in regulating epithelial morphology, brain structure, and neurite arbor size and complexity. These closely resemble features of the human disorder, providing evidence that this is a good genetic model for this cause of ID.
机译:智力障碍(ID)是大脑发育障碍的常见表型,在病因学上具有多种遗传原因。 PAK3是具有多个引起ID的突变的基因。受影响的人患有小头畸形,并且已经报道了其他脑结构缺陷。此外,PAK3与其他18个基因的遗传网络中,其突变会导致ID,这表明PAK3调节认知功能的分子机制可能与其他遗传ID疾病共有。在啮齿动物模型中的研究表明,PAK3的直系同源物对于调节树突棘的形态和产后大脑的大小很重要。在果蝇中,卵子发生,胚胎发生过程中的背侧闭合以及唾液腺腔形成的形态学过程需要Pak,即PAK3的果蝇直系同源物。此外,Pak对于果蝇中枢神经系统(CNS)中神经肌肉接头的突触下网状结构,感觉轴突寻路和终末乔化形成具有重要意义。但是,Pak在蘑菇体(MB)结构和固有神经突乔木形态发生中的作用以及潜在的细胞和分子机制的细节尚不清楚。为了解决这一空白,我使用了果蝇的PAK3基因突变,Pak以及免疫染色,原代细胞培养和遗传相互作用研究的组合来阐明这些机制。我对先前报道的成年Pak表型的存活率降低以及腿和翅膀的形态进行了详细的表征。我发现存活率降低是一种低渗透性表型,该突变型由同一诱变的染色体增强。成年侧翼的缺陷包括各层之间的折叠和错位,水泡以及缺失或部分交叉的脉。 Pak突变型腿很短,在in情况下经常被误导,腿段本身的形状存在形态缺陷。蘑菇体是重要的昆虫学习和记忆大脑结构,其裂片由轴突束组成,单个轴突分叉形成α和β裂片。 Pak的突变会导致MBα和β瓣的长度,厚度和方向出现缺陷。当这些结构发生神经发生和分化时,这些缺陷在变态过程中的严重性会增加,这表明Pak可以稳定α/β蘑菇体神经元的分支。 Pak突变体培养的神经元具有减少的神经突乔木大小和神经突口径的缺陷。最初的生长正常,随后神经突分支数减少,再次支持了Pak在神经突分支稳定性中的作用。接种后六小时,生长锥中的细胞骨架以及体外三天后,神经元中都存在缺陷。 Pak突变表型的严重程度取决于肌球蛋白调节轻链的磷酸化状态,支持了Pak通过抑制肌球蛋白轻链激酶调节神经突分支稳定性的机制假说。分支稳定性降低的神经元表型表明,PAK3突变相关的脑部疾病是细胞发病机理的过度后退机制。我用蛋白质印迹法鉴定了果蝇Pak中四个无意义突变的蛋白质产物,以解释基因型与表型的关系。每个等位基因在分子上具有独特的后果:Pak¹,终止密码子通读和截短的蛋白质;白蛋白,未读通,但蛋白质被截断; Pak⁶,无蛋白截短的通读; Pak¹,既不通读也不截断蛋白质。 Pak 11和Pak 18等位基因产生的截短蛋白保留了部分功能,以维持生存,机翼起泡,腿部形态和神经突长度。相反,截短的蛋白质会增加蘑菇体缺陷的严重程度。截短的蛋白质对神经元分支数,翼折叠或静脉缺损没有影响。总之,这些结果证明了Pak在调节上皮形态,脑结构以及神经突乔木大小和复杂性中的作用。这些与人类疾病的特征极为相似,提供了证据证明这是导致ID病因的良好遗传模型。

著录项

  • 作者

    Lewis Sara Ann;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号