首页> 外文学位 >Picturing the physics behind equations and graphs: A grounded cognition based model for multimedia learning and its application in physics education.
【24h】

Picturing the physics behind equations and graphs: A grounded cognition based model for multimedia learning and its application in physics education.

机译:在方程式和图形后面描绘物理现象:一种基于认知的多媒体学习模型及其在物理教育中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis tries to answer a fundamental question in physics education: How does the design of instructional representations affect the process of constructing physics knowledge? This question is important for the creation of instructional materials of any form, ranging from printed textbooks to blackboard writings in the classroom. It is especially critical for the creation of computerized multimedia lectures, as the visualization power of the computer opens up almost limitless possibilities to represent physics concepts in novel ways.;To answer this question, I bring together knowledge from three different areas: physics education research (PER), multimedia learning (MML) theory, and most importantly, the perceptual symbols system (PSS) framework of grounded cognition. I argue that neither the existing PER theories nor the existing MML models are able to provide a satisfactory answer to this question alone. The reason of which, I believe, is that these theories are based on an amodal symbol view of cognition.;The PSS framework, however, "grounds" human cognition in "modal symbols": neural activation of sensory/motor modals of the brain. By adopting this framework, I have constructed a new cognitive model for physics learning from multimedia representations that has much greater predictive power compared to the existing models, especially with respect to the effectiveness of visual representations. This new model predicts that the perceptual features of instructional representations (graphs, equations and text), can have a significant impact on students' learning outcome. If correctly designed, perceptual features can greatly improve the effectiveness of instructional materials.;We examined the major predictions of the model in two clinical experiments. The results of experiment 1 shows that perceptually enhanced design based on the new model has a positive impact on students' conceptual understanding, as well as on their ability to transfer the knowledge learned to a different context. The results of experiment 2 suggest that perceptually enhanced design may also improve knowledge activation and facilitate the creation of multi-step solutions. However, several other factors not included in this model may also have a significant impact on the learning outcomes. None of the existing models of MML are able to account for these results.;In the last chapter, we discuss several factors of the learning process that are not covered in the current model, and point out several possible directions for future improvements.
机译:本文试图回答物理学教育中的一个基本问题:教学表征的设计如何影响物理学知识的建构过程?这个问题对于创建任何形式的教学材料都很重要,从印刷的教科书到教室的黑板上的文字。这对于创建计算机化的多媒体讲座尤为重要,因为计算机的可视化功能几乎无限地开辟了以新颖的方式表示物理概念的可能性。为回答这一问题,我将来自三个不同领域的知识汇集在一起​​: (PER),多媒体学习(MML)理论,最重要的是扎根认知的感知符号系统(PSS)框架。我认为,现有的PER理论或现有的MML模型都不能单独为这个问题提供令人满意的答案。我认为,其原因是这些理论基于认知的非模态符号视图。;但是,PSS框架将人类认知基于“模态符号”:神经激活大脑的感觉/运动模态。通过采用该框架,我为多媒体表示构造了一个用于物理学习的新认知模型,与现有模型相比,它具有更大的预测能力,尤其是在视觉表示的有效性方面。这个新模型预测,教学表征(图形,方程式和文本)的感性特征可能会对学生的学习成果产生重大影响。如果设计正确,则感知功能可以大大提高教学材料的有效性。我们在两次临床实验中检验了该模型的主要预测。实验1的结果表明,基于新模型的感知增强设计对学生的概念理解以及他们将所学知识转移到不同环境中的能力具有积极影响。实验2的结果表明,在感知上增强的设计还可以改善知识激活并促进多步解决方案的创建。但是,此模型中未包括的其他几个因素也可能对学习结果产生重大影响。 MML的现有模型都无法解释这些结果。在上一章中,我们讨论了当前模型中未涵盖的学习过程中的几个因素,并指出了未来改进的一些可能方向。

著录项

  • 作者

    Chen, Zhongzhou.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Physics.;Science education.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号