首页> 外文学位 >Airway wall deformation under smooth muscle contraction.
【24h】

Airway wall deformation under smooth muscle contraction.

机译:平滑肌收缩下气道壁变形。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this thesis is the development and evaluation of a mathematical model that captures the deformation behavior of the human airway under smooth muscle contraction. The problem consists of a multilayered circular cylindrical tube subjected to an active contractile stress generated by the smooth muscle layer. The problem formulation assumes axisymmetric deformation for an incompressible isotropic neo-Hookean material. The model is formulated as fully nonlinear and accommodates large deformation, since these are expected in the human airway and other soft biological materials. The equilibrium equations are obtained, as well as the strain-displacement relationship, boundary conditions, and constitutive equations that describe the contractile stress for neo-Hookean hyperelastic solids. The main focus of the project is to obtain the change in airway caliber after a prescribed contractile stress is introduced in the smooth muscle layer. A MATLAB code was written to numerically solve the resulting nonlinear algebraic equation, which obtains the change in airway caliber. The code allows the user to analyze and change the material parameters that govern the solution, as well as input different dimensions for the multilayer cylinder. In the deformation of the airway, the lung parenchyma plays a very important role in preventing full closure of the airway. Here, the lung parenchyma is treated as an infinitely large continuous solid, in which the airway is embedded. The airway generations selected for further investigation are generations 0, 4, 8, 12 and 16. For the lung parenchyma infinite domain assumption, the percent airway caliber change for the critical contractile stresses of the airway generations were 23.86%, 23.68%, 23.95%, 24.56%, and 25.51% for generations 0,4,8,12, and 16, respectively.;The mathematical model does not account for the buckling that is observed in the deformation of the human airway, since the deformation is assumed to be axisymmetric. When the contractile stress in the smooth muscle layer exceeds a certain value, the airway buckles and folds. Therefore, finite element simulations were conducted using ABAQUS software to determine the critical contractile stress at which the airway will buckle. Buckling analyses were performed in order to obtain the buckling modes of the airway, as well as the critical load that will cause the it to buckle, for airway generations 0, 4, 8, 12, and 16. The critical load in which the airway buckles and folds for these generations of the airway are 1.755 kPa, 1.572 kPa, 1.493 kPa, 1.426 kPa, and 1.374 kPa respectively. Contractile stresses used in the analytical model that are larger than the critical buckling loads will provide invalid results since the assumptions made to develop the model will no longer be valid. After the buckling analysis, the first buckling mode is introduced in a post buckling analysis in order to obtain the average change in caliber and the active contractile stresses.
机译:本文的目的是开发和评估数学模型,该模型可以捕获人气道在平滑肌收缩下的变形行为。问题在于多层圆柱管受到平滑肌层产生的主动收缩应力。问题公式假定不可压缩的各向同性新霍克材料的轴对称变形。该模型被公式化为完全非线性并适应大变形,因为这些变形在人的气道和其他软生物材料中是预期的。获得了平衡方程,以及应变-位移关系,边界条件和描述新霍克超弹性固体的收缩应力的本构方程。该项目的主要重点是在平滑肌层中引入规定的收缩应力后获得气道口径的变化。编写了MATLAB代码以对所得的非线性代数方程进行数值求解,从而获得气道口径的变化。该代码允许用户分析和更改控制解决方案的材料参数,以及为多层圆柱体输入不同的尺寸。在气道变形中,肺实质在防止气道完全闭合中起着非常重要的作用。在此,将肺实质视为无限大的连续固体,其中嵌入了气道。选择用于进一步研究的气道世代是第0、4、8、12和16世代。对于肺实质无限域假设,气道世代关键收缩应力的气道口径变化百分比为23.86%,23.68%,23.95%分别对于第0、4、8、12和16代分别为24.56%和25.51%。;该数学模型没有考虑在人的气道变形中观察到的屈曲,因为假定变形是轴对称。当平滑肌层中的收缩应力超过一定值时,气道弯曲并折叠。因此,使用ABAQUS软件进行了有限元模拟,以确定气道弯曲的临界收缩应力。对于第0、4、8、12和16代气道,进行屈曲分析以获得气道的屈曲模式以及将导致气道屈曲的临界载荷。这些世代气道的曲折和折痕分别为1.755 kPa,1.572 kPa,1.493 kPa,1.426 kPa和1.374 kPa。大于临界屈曲载荷的分析模型中使用的收缩应力将提供无效的结果,因为为开发模型所做的假设将不再有效。在屈曲分析之后,在屈曲后分析中引入第一种屈曲模式,以便获得口径和活动收缩应力的平均变化。

著录项

  • 作者

    Javier, Carlos.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Biomechanics.;Mechanics.
  • 学位 M.S.
  • 年度 2016
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号