首页> 外文学位 >Electrical Characteristics of Grain Boundaries in Oxygen Ion and Proton-Conducting Solid Oxide Electrolytes.
【24h】

Electrical Characteristics of Grain Boundaries in Oxygen Ion and Proton-Conducting Solid Oxide Electrolytes.

机译:氧离子和质子传导固体氧化物电解质中晶界的电学特性。

获取原文
获取原文并翻译 | 示例

摘要

Polycrystalline solid oxide electrolytes have been applied in a wide variety of scientific fields including: fuel cells, gas sensors, and gas pumps. The key to operating these devices more efficiently lies in the electrical properties of the grain and grain boundary in such electrolytes. This particular study focuses on the electrical properties of mostly grain boundaries with a minor emphasis on grain interiors on a few popular solid oxide electrolytes: doped ZrO2, CeO2, LaGaO3, BaZrO3, and SrZrO3 that conducts either oxide ions or protons. This is because the grain boundaries in these electrolytes often determine the electrical conductivity of the materials. Through the examination of an average width of "electrical" grain boundaries in Y-doped BaZrO 3, it was established that the width increases with decreasing dopant concentration, in accordance with what a space-charge model (i.e., the Mott-Schottky model) predicts. In addition, the current-voltage relationships under applied dc-bias of doped Y-doped CeO2, Sr-doped LaGaO3, Y-doped BaZrO3, and SrZrO3 show an ohmic to superohmic transition as the applied dc-bias exceeds the thermal voltage, consistent with the thermionic emission theory of a current flowing through a Schottky-type potential barrier at a solid-solid interface. These evidences unambiguously verify that the highly resistive nature of grain boundaries of these microcrystalline electrolytes originates from the potential barrier caused by the difference in the chemical potential in the grain and grain boundaries.;Although the grain boundaries of these microcrystalline electrolytes are thought to be highly resistive, a completely different phenomenon occurs at the grain boundaries of doped ZrO2 and CeO2 as the grain size reduces to tens of nanometers—they start to conduct protons in a H2O saturated environment as temperature drops below around 150 °C. Through a dopant concentration dependence of electrical conductivity study on dense fluorite-structured, nanocrystalline Gd-doped CeO2, it was found as hypothesized that the bulk defect chemistry does not play a role in determining such protonic conductivity due to the invariance of the protonic conductivity with different dopant concentrations. Encouragingly, this result implies that the protonic conduction may very well exist in the grain boundaries of other solid electrolytes with similar grain size and not necessarily limited to the fluorite structure.;Finally, the last part of this dissertation focuses on oxygen vacancy dynamics in the grain interior in an extreme case of heavily doped solid oxide electrolyte where high degree of dopant-oxygen vacancies association is expected to occur. In this study, a combined 89Y MAS NMR and impedance spectroscopy was performed on 59 cat% Y-doped ZrO2 over a wide range of temperature (from ambient to 500 °C for NMR and 350 to 700 °C) yielding very similar hopping frequencies and their respective activation energies (∼1.4 eV) between the two spectroscopies. More importantly, an average hopping distance of ∼ 7.5±1.0 Å as determined by NMR allows the computation of the mobilities, which when combined with the conductivity results from impedance spectroscopy, ultimately allows the determination of the concentration of mobile charge carriers, i.e., oxygen vacancies in this system.
机译:多晶固体氧化物电解质已被广泛应用于许多科学领域,包括:燃料电池,气体传感器和气泵。更有效地操作这些装置的关键在于这种电解质中晶粒和晶界的电特性。这项特殊的研究着眼于大多数晶界的电学性质,而很少关注一些流行的固体氧化物电解质的晶粒内部:掺杂的ZrO2,CeO2,LaGaO3,BaZrO3和SrZrO3,它们传导氧化物离子或质子。这是因为这些电解质中的晶界通常决定了材料的电导率。通过检查Y掺杂BaZrO 3中“电”晶界的平均宽度,可以确定该宽度随空间电荷模型(即Mott-Schottky模型)的增加而随掺杂剂浓度的降低而增加。预言。此外,掺杂的Y掺杂CeO2,Sr掺杂的LaGaO3,Y掺杂的BaZrO3和SrZrO3在施加的直流偏压下的电流-电压关系显示出从欧姆到超欧姆的过渡,因为施加的直流偏压超过了热电压,这是一致的。根据热电子发射理论,电流在固-固界面处流过肖特基势垒。这些证据明确地证明了这些微晶电解质的晶界的高电阻性质是由晶界和晶界中化学势差所引起的势垒引起的;尽管这些微晶电解质的晶界被认为是高度的电阻,当晶粒尺寸减小到几十纳米时,掺杂的ZrO2和CeO2的晶界会发生完全不同的现象-当温度降至150°C以下时,它们会在H2O饱和环境中开始传导质子。通过研究电导率对致密萤石结构,纳米晶Gd掺杂的CeO2的掺杂剂浓度依赖性,可以发现,由于质子电导率的不变性,体缺陷化学在确定这种质子电导率中不起作用。不同的掺杂剂浓度。令人鼓舞的是,该结果暗示质子传导可能很好地存在于其他具有相似晶粒尺寸且不一定限于萤石结构的固体电解质的晶界中。最后,本论文的最后一部分着重于氢氧空位动力学。在重掺杂固体氧化物电解质的极端情况下,晶粒内部会发生高度的掺杂剂-氧空位缔合。在这项研究中,在很宽的温度范围内(从室温到NMR的500°C和从350到700°C的温度范围内)对59 cat%的Y掺杂ZrO2进行了89Y MAS NMR和阻抗谱的组合研究,得到了非常相似的跳跃频率和在两个光谱仪之间它们各自的活化能(〜1.4 eV)。更重要的是,通过NMR确定的平均跳变距离约为7.5±1.0Å,可以计算迁移率,当与阻抗谱得出的电导率结合使用时,最终可以确定移动载流子的浓度,即氧气该系统中的空缺。

著录项

  • 作者

    Chen, Chien-Ting.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Energy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号