首页> 外文学位 >Control framework for dynamic walking of a bipedal robot.
【24h】

Control framework for dynamic walking of a bipedal robot.

机译:双足机器人动态行走的控制框架。

获取原文
获取原文并翻译 | 示例

摘要

Despite significant progress in recent years, the capabilities of today's Humanoid robots still lack behind the walking abilities of humans in terms of competence, robustness, flexibility, and speed. Furthermore, unknown environmental conditions and related constraints imposed on the robot significantly increase the complexity of locomotion control and decision making for such systems, easily making planning-based approaches intractable. Part of the reason for this is that the control of a humanoid encompasses observation, processing the observed data, and decision making in terms of locomotion gait and body pose parameters. This key information derived from observations and internal robot information finally allows calculating the appropriate signals to be fed to the actuators which in turn move and adjust the mechanical joints with respect to the environment. The complexity of biped walking is also driven by the kinematic structure of the robot. If the robot has a large degree of freedom, the parameters that can be used to affect the robustness of the robot increase along with the number of controls. This, in turn, can lead to a significant increase in computation cost in monolithic control approaches that compute gait and control for the entire kinematic mechanism.;As a contribution towards the objective of developing useful walking machines, the work presented in this thesis takes a modular approach to locomotion control where the overall control task is decomposed into elements with individual subtask responsibilities. The goal here is to break the overall complexity into manageable parts by relying on the robustness and reactivity of the other modules. This thesis presents a basic overview of this approach and then focuses on the development of the parts of this approach centered around flexible gait generation. In this part it focuses on modules that address very specific problems of walking such as permitting dynamically changing step lengths, stepping frequencies, height of the body, and stance stability during the walk cycle, in order to adjust itself to the environment, prevent it from falling down, and address foothold and pace parameters provided by higher-level, environment-dependent modules. This thesis proposes a control framework that stabilizes a humanoid robot while these characteristics of the walk are changed. In the modules developed to achieve this, methods such as position control, flexible walking pattern generation using parametric trajectories, and zero-moment control for reactive stabilization are used to generate a dynamically walk. The resulting controller is demonstrated using a simulated humanoid model taking into account the natural dynamics, torque limits and the model of the walking surface.
机译:尽管近年来取得了长足的进步,但当今的类人机器人的能力在能力,鲁棒性,灵活性和速度方面仍落后于人类的行走能力。此外,未知的环境条件和强加于机器人的相关约束条件大大增加了此类系统的运动控制和决策制定的复杂度,从而很容易使基于计划的方法变得难以处理。造成这种情况的部分原因是,类人动物的控制包括观察,处理观察到的数据以及根据运动步态和身体姿势参数进行决策。从观察得到的关键信息和内部机器人信息最终允许计算要馈送到执行器的适当信号,执行器又会相对于环境移动和调整机械关节。两足动物步行的复杂性还受机器人的运动学结构驱动。如果机器人具有较大的自由度,则可用于影响机器人坚固性的参数会随控件数量的增加而增加。反过来,这会导致整体控制方法的步态和控制的整体控制方法中的整体控制方法的计算成本显着增加。为了对开发有用的步行机的目标做出贡献,本文提出的工作运动控制的模块化方法,其中将总体控制任务分解为具有各个子任务职责的元素。目的是通过依靠其他模块的鲁棒性和反应性,将整体复杂性分解为可管理的部分。本文介绍了这种方法的基本概述,然后重点介绍了以灵活步态生成为中心的该方法各部分的开发。在这一部分中,它着重于解决非常具体的步行问题的模块,例如允许动态改变步长,步频,身体高度和步行周期中的姿势稳定性,以适应环境,以防止其变形。下降,并解决由更高级别的环境相关模块提供的立足点和步伐参数。本文提出了一种控制框架,当步行的这些特征发生变化时,该框架可以稳定人形机器人。在为实现此目的而开发的模块中,诸如位置控制,使用参数轨迹的灵活步行模式生成以及用于反应稳定的零力矩控制等方法用于生成动态步行。结合自然动力学,扭矩极限和行走表面模型,使用模拟人形模型演示了所得的控制器。

著录项

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Robotics.;Computer Science.
  • 学位 M.S.
  • 年度 2012
  • 页码 62 p.
  • 总页数 62
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号