首页> 外文学位 >Multi-physics modeling and experimental investigation of low-force MEMS switch contact behavior.
【24h】

Multi-physics modeling and experimental investigation of low-force MEMS switch contact behavior.

机译:低力MEMS开关接触行为的多物理场建模和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

MEMS ohmic contact switches offer tremendous performance compared to solid-state switches. However, their reliability and power handling capability are poor by comparison. Analysis of their failure mechanisms shows that their contact behavior is still poorly understood. Although metal contacts have been the subject of extensive research, few studies have performed tests using the low contact forces available in MEMS. For example, no studies have explored the contact heating of MEMS switches, yet some papers suggest it is beneficial and others that it may cause failure. Similarly, while contact sticking has been reported as a consistent failure mode, no study has experimentally explored MEMS contact adhesion.; This dissertation presents multi-physics modeling and significant experimental data exploring the heating and adhesion of low-force MEMS contacts. We develop multiphysics models describing electrical, thermal, and mechanical behavior of MEMS switches. We also study the effects of contact force and contact heating on the contact resistance, and we present substantial data describing the MEMS contact adhesion.; Using the models and experiments, we show that heating of a contact causes contact resistance to decrease. We also show that classical contact theory over-predicts contact heating for low-force contacts. A new theory is therefore developed that describes the observed behavior well. Further, we show that contact heating can be used to keep contact resistance low, avoiding one of the significant failure modes for MEMS switches. However, the data demonstrate that increasing the contact force has a much smaller effect on the contact resistance by comparison, contrary to the conventional wisdom on resistance control.; Contact opening time is strongly affected by contact adhesion. Here, we demonstrate that opening time (and thus adhesion) decreases when contact resistance or pull-apart force increase, or when the apparent contact area decreases. We present a model describing the contact opening process. We also show that beam vibrations have a strong effect on reducing the contact opening time.; The dissertation ends by making recommendations to improve the design and operation of MEMS switches based on the improved understanding gained from the modeling and experiments. These recommendations address the dominant failure mechanisms for MEMS switches.
机译:与固态开关相比,MEMS欧姆接触开关提供了卓越的性能。但是,相比之下,它们的可靠性和功率处理能力较差。对它们的故障机制的分析表明,他们的接触行为仍然知之甚少。尽管金属触点已成为广泛研究的主题,但很少有研究使用MEMS中的低接触力进行测试。例如,没有研究探索MEMS开关的接触加热,但是一些论文表明它是有益的,而另一些论文则可能导致故障。类似地,虽然已经报道了接触粘连是一种一致的失效模式,但是还没有实验研究过MEMS接触粘连。本文提出了多物理场建模和重要的实验数据,探索了低力MEMS触点的加热和粘附。我们开发了描述MEMS开关的电,热和机械行为的多物理场模型。我们还研究了接触力和接触加热对接触电阻的影响,并提供了描述MEMS接触粘合力的大量数据。使用模型和实验,我们表明接触点的加热会导致接触电阻降低。我们还表明,经典的接触理论高估了低力接触的接触加热。因此,开发了一种新的理论,该理论很好地描述了观察到的行为。此外,我们证明了接触加热可用于保持较低的接触电阻,从而避免了MEMS开关的重大故障模式之一。然而,数据表明,与传统的电阻控制方法相反,增加接触力对接触电阻的影响要小得多。触点打开时间受触点粘附力的强烈影响。在这里,我们证明当接触电阻或拉力增大或表观接触面积减小时,打开时间(并因此而减小)减小。我们提供一个描述联系人打开过程的模型。我们还表明,光束振动对减少触点打开时间有很大的影响。本文基于对建模和实验的理解,提出了改进MEMS开关设计和操作的建议。这些建议解决了MEMS开关的主要故障机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号