首页> 外文学位 >Trajectory Tracking and Formation Control of a Platoon of Mobile Robots.
【24h】

Trajectory Tracking and Formation Control of a Platoon of Mobile Robots.

机译:移动机器人排的轨迹跟踪和编队控制。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is concerned with controlling a platoon of wheeled mobile robots (WMR), where the robots are aimed to follow a trajectory while they maintain their formation intact. The control design is carried out by considering unicycle kinematics for each robot, and the leader-follower structure for the formation. It is assumed that every robot except the one located at the end of each platoon can potentially be the leader to the one behind it. It is also assumed that each follower is capable of sensing its relative distance and relative velocity with respect to its preceding robot. The stability of the proposed control law is investigated in the case of perfect sensing and in the presence of input saturation. The impact of measurement noise on the followers is then studied assuming that a known upper bound exists on the measurement error, and a linear matrix inequality (LMI) methodology is proposed to design a control law which minimizes the upper bound on the steady-state error.;The problem is then investigated in a more practical setting, where the control input is subject to delay, and that the tracking trajectory can be different in distinct time intervals. It is to be noted that delay often exists in this type of cooperative control system due to data transmission and signal processing, and if neglected in the control design, can lead to poor closed-loop performance or even instability. Furthermore, switching in tracking trajectory can be used as a collision avoidance strategy in the formation control problem. Delay dependent stability conditions are derived in the form of LMIs, and the free-weighting matrix approach is used to obtain less conservative results. Simulations are presented to demonstrate the efficacy of the results obtained in this thesis.
机译:本文涉及控制轮式移动机器人(WMR)排,其中机器人的目标是在保持完整编队的同时遵循轨迹。控制设计是通过考虑每个机器人的单轮运动学以及编队的前随从结构来进行的。假定除了位于每个排末端的机器人之外,每个机器人都可能成为其后面机器人的领导者。还假定每个跟随者都能够感知其相对于其先前机器人的相对距离和相对速度。在完美感测和存在输入饱和的情况下,研究了所提出控制律的稳定性。然后,假设测量误差存在一个已知的上限,然后研究测量噪声对跟随器的影响,并提出了一种线性矩阵不等式(LMI)方法来设计一种控制律,该控制律可将稳态误差的上限降至最低然后,在更实际的环境中研究该问题,在该环境中,控制输入会受到延迟,并且跟踪轨迹在不同的时间间隔中可能会有所不同。要注意的是,由于数据传输和信号处理,这种类型的协作控制系统经常存在延迟,如果在控制设计中忽略了延迟,则可能导致较差的闭环性能甚至不稳定。此外,跟踪轨迹的切换可以用作编队控制问题中的避免碰撞策略。依赖于延迟的稳定性条件以LMI的形式导出,并且使用自由加权矩阵方法来获得不太保守的结果。仿真结果证明了本文结果的有效性。

著录项

  • 作者

    Aliakbar Golkar, Mahsa.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Electronics and Electrical.;Engineering Robotics.
  • 学位 M.A.Sc.
  • 年度 2010
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号