首页> 外文学位 >New materials and functionality in spintronics devices.
【24h】

New materials and functionality in spintronics devices.

机译:自旋电子器件中的新材料和新功能。

获取原文
获取原文并翻译 | 示例

摘要

The next generation of electronics devices, known as spintronics, which incorporate the spin property of the carriers in combination with their charge degree of freedom is the focus of to-date research. Therefore, exciting new classes of materials have been emerging for the last few years for the development of spintronics devices. This study has been carried out to understand/control various properties of such materials at the fundamental level which is important for the spintronics devices applications. Materials studied here include magnetic semiconductors, magnetostrictive alloys and magnetic tunnel junctions (MTJ) based sensors.;In the first part, a comparative study of the room temperature ferromagnetism of Co doped ZnO and CeO2 is presented with emphasis on the role of dopant, defects and host oxide. Systemic structural, magnetic, and transport analyses reveal that the nature of donor defects and host oxide plays a vital role in establishing ferromagnetism. This study provides an insight into the underlying mechanisms responsible for the ferromagnetism in Co-ZnO and Co-CeO 2. Moreover, the discussed exchange mechanisms are in good agreement with the electronic structure calculation of magnetic impurity ions and defects.;Composite materials with strong magneto-electric (ME) coupling require magnetic thin films with large saturation magnetostriction constant at low magnetic fields. In the second part of this dissertation, we have studied FeGa alloys where changes in their microstructure with the incorporation of boron occur. These changes make this material a soft magnetic alloy (coercivity ∼ 2 Oe) which has a narrow ferromagnetic resonance (FMR) line width, large magnetostriction and high saturation magnetization. The anisotropy values have been extracted from study of the angular dependence of FMR. This work highlights the role of crystalline anisotropy and induced uniaxial anisotropy which determine the magnetic softness and enhanced magnetostriction at small magnetic fields. In addition, the effects of rapid thermal annealing on the structure and magnetic properties of the crystalline as well as amorphous FeGaB thin films have been studied.;Additionally, new electrode materials within the magnetic tunneling junction (MTJ) have been developed using FeGaB which serve as the sensing magnetic layer. This provides a method to measure mechanical strain or stress with high sensitivity. It has been shown that TMR of greater than 12% at room temperature could be achieved in CoFeB/MgO/FeGaB based junctions. This suggests that FeGaB could be a new magnetic electrode for MTJs based pressure devices.;The ability of magnetoresistive (MR) material to sense very weak magnetic fields at room temperature can be used for the magnetic sensor's design. In the third part, the Al2O3 based sensors have been studied where the shape anisotropy in the free magnetic electrode has been observed to results in a linear and hysteresis free magnetoresistance (MR) curve. Moreover, Al2O3 based sensor have 28 - 30% TMR and sensitivity up to 0.4 %/Oe over a magnetic field range of -40 Oe to 40 Oe whereas the MgO-based sensor with superparamagnetic free layer has about 90 % TMR and sensitivity of 1.1 %/Oe over the same field range. This work has been carried out under the supervision of the author's dissertation advisor, Prof. John Q. Xiao.
机译:下一代电子设备,称为自旋电子学,结合了载体的自旋特性和其电荷自由度,是当前研究的重点。因此,在过去的几年中,随着自旋电子器件的发展,出现了令人兴奋的新型材料。已经进行了这项研究以从根本上理解/控制这种材料的各种特性,这对于自旋电子器件的应用很重要。本文研究的材料包括基于磁性半导体,磁致伸缩合金和基于磁性隧道结(MTJ)的传感器。在第一部分中,对掺Co的ZnO和CeO2的室温铁磁性进行了比较研究,重点是掺杂剂,缺陷的作用和主体氧化物。系统的结构,磁性和传输分析表明,供体缺陷和主体氧化物的性质在建立铁磁性中起着至关重要的作用。这项研究提供了对导致Co-ZnO和Co-CeO 2中铁磁性的潜在机理的深刻见解。此外,所讨论的交换机理与磁性杂质离子和缺陷的电子结构计算非常吻合。磁电(ME)耦合需要在低磁场下具有大饱和磁致伸缩常数的磁性薄膜。在本文的第二部分,我们研究了FeGa合金,其中随着硼的掺入,其微观结构发生变化。这些变化使这种材料成为一种软磁合金(矫顽力约为2 Oe),具有较窄的铁磁共振(FMR)线宽,较大的磁致伸缩和较高的饱和磁化强度。各向异性值已从FMR的角度依赖性研究中提取。这项工作突出了晶体各向异性和诱导的单轴各向异性的作用,这些作用决定了在小磁场下的磁软度和增强的磁致伸缩性。此外,还研究了快速热退火对晶体和非晶FeGaB薄膜的结构和磁性能的影响;此外,使用FeGaB在磁性隧穿结(MTJ)中开发了新的电极材料,这些材料可用于作为感应磁性层。这提供了一种以高灵敏度测量机械应变或应力的方法。已经表明,在基于CoFeB / MgO / FeGaB的结中,室温下的TMR可以达到12%以上。这表明FeGaB可能成为基于MTJs的压力设备的新型磁性电极。磁阻(MR)材料在室温下感测非常弱的磁场的能力可用于磁性传感器的设计。在第三部分中,对基于Al2O3的传感器进行了研究,其中观察到了自由磁性电极中的形状各向异性,从而形成了线性磁滞和磁滞自由磁阻(MR)曲线。此外,基于Al2O3的传感器在-40 Oe至40 Oe的磁场范围内具有28-30%的TMR和高达0.4%/ Oe的灵敏度,而具有超顺磁性自由层的基于MgO的传感器具有约90%的TMR和1.1的灵敏度同一领域范围内的%/ Oe。这项工作是在作者的论文顾问John Q. Xiao教授的监督下进行的。

著录项

  • 作者

    Shah, Lubna R.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Physics Electricity and Magnetism.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号