首页> 外文学位 >Mid-infrared quantum cascade lasers with novel active core and laser cavity designs.
【24h】

Mid-infrared quantum cascade lasers with novel active core and laser cavity designs.

机译:具有新型有源纤芯和激光腔设计的中红外量子级联激光器。

获取原文
获取原文并翻译 | 示例

摘要

Understanding and harnessing interactions between light and matter have been an enduring endeavor in human history and a centerpiece of modern science and technology developments, and given birth to numerous brilliant inventions such as light emitting diodes and lasers that completely changed the world. Quantum Cascade (QC) lasers as one of the newest achievements in this rank have motivated a broad range of exciting potential applications such as high-sensitivity trace gas sensing, non-invasive glucose monitoring, free-space optical communication, etc. Although the QC laser technology has been undergoing a rapid and steady development phase ever since its invention in 1994, further improvements in aspects such as output power, efficiency, spectral purity and cost-effectiveness are indispensable for large-scale implementations of QC laser based application systems. To meet such ends, we explore in this thesis novel approaches from the device structural design perspective to further improve the overall performance of QC lasers and lower their fabrication cost, while at the same time assess new application possibilities.;Exploiting the extraordinary design flexibility of the QC laser band-structure, we demonstrate a major step forward in the power performance of QC lasers by employing a novel ultra-strong coupling design strategy. A record QC laser wall-plug efficiency of ∼50% is achieved. Such high-performance QC lasers enable our proof-of-concept implementation of a mid-IR backscattering light detection and ranging (LIDAR) system. Moreover, the ultra-strong coupling design strategy is also applied to realizing QC lasers with broad-band optical gain. QC lasers with optical gain spectrum width corresponding to ∼40% of the radiative transition energy are demonstrated.;As single-mode operation of QC lasers is indispensable for most sensing applications, we further explore unconventional laser cavity designs to achieve single-mode QC lasers more cost-effectively. Two fundamentally different approaches, i.e., the monolithic coupled-cavities and the asymmetric Mach-Zehnder interferometer type cavities, are proposed and experimentally verified. Both types of cavities are capable of establishing strong wavelength selectivity and facilitating single-mode operation of QC lasers without the need of sub-wavelength periodic feedback structures, and therefore are much more cost-effective than conventional single-mode QC laser technologies.;Our explorations presented in this thesis widen the territory for the QC laser research field and shed light on new directions for future explorations.
机译:理解和利用光与物质之间的相互作用一直是人类历史上的不懈努力,也是现代科学和技术发展的核心,并催生了无数辉煌的发明,例如发光二极管和激光器彻底改变了世界。量子级联(QC)激光器是该级别的最新成就之一,已激发了广泛的令人兴奋的潜在应用,例如高灵敏度的痕量气体传感,无创葡萄糖监测,自由空间光通信等。自从1994年发明以来,激光技术一直处于快速,稳定的发展阶段,在输出功率,效率,光谱纯度和成本效益等方面的进一步改进对于基于QC激光的应用系统的大规模实施是必不可少的。为达到上述目的,本文从器件结构设计的角度探讨了新颖的方法,以进一步改善QC激光器的整体性能并降低其制造成本,同时评估新的应用可能性。在QC激光器的能带结构中,我们通过采用新颖的超强耦合设计策略证明了QC激光器在功率性能方面的重要进步。达到了创纪录的约50%的QC激光墙塞效率。此类高性能QC激光器使我们能够对中红外反向散射光检测和测距(LIDAR)系统进行概念验证。此外,超强耦合设计策略还应用于实现具有宽带光学增益的QC激光器。展示了具有约40%辐射跃迁能量的光学增益光谱宽度的QC激光器;由于QC激光器的单模工作对于大多数传感应用都是必不可少的,因此我们进一步探索非常规的激光腔设计以实现单模QC激光器更具成本效益。提出并通过实验验证了两种根本不同的方法,即单片耦合腔和非对称Mach-Zehnder干涉仪型腔。两种类型的腔体都能够建立强的波长选择性并促进QC激光器的单模操作,而无需亚波长周期性反馈结构,因此比传统的单模QC激光器技术更具成本效益。本文提出的探索拓宽了QC激光研究领域的范围,为未来的探索提供了新的方向。

著录项

  • 作者

    Liu, Peter Qiang.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.;Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 236 p.
  • 总页数 236
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号