首页> 外文学位 >Constraint-based clustering procedure for data envelopment analysis.
【24h】

Constraint-based clustering procedure for data envelopment analysis.

机译:基于约束的聚类过程,用于数据包络分析。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation integrates two important fields of information technology, data mining and data envelopment analysis (DEA), to provide a new tool for measuring the performance of decision making units (DMU). The DEA is a powerful performance measurement methodology for assessing the relative efficiency of DMUs. This methodology determines the efficient and inefficient DMUs in order to gain valuable information for making further improvements such as identifying the savings in expenditures and the best suitable way to distribute services which will eventually improve the productivity of the entire system. There are two typical assumptions in the DEA: (1) the DEA assumes that all DMUs are homogenous and identical in their operations, and (2) the DEA is deterministic and that leads to inaccurate efficiency assessment in the presence of outliers or unusual observations.; Many investigations have dealt with the DEA models, but few have focused on heterogonous DMUs, outlier detection, and scalability over large datasets. In this dissertation, a comprehensive model is presented. We introduce a new constraint-based clustering method for early detection of outliers to evaluate the performance scores of non-homogenous DMUs. In this method, DMUs dissimilar to the DMU under evaluation are labeled as outliers and are excluded from the analysis. This work removes the extra effort needed to predefine the dissimilarity parameters or the number of DMUs to be excluded.; Experimental results of our approach show big improvements in assessing the transportation system funding for school districts in the state of North Dakota. An extensive analysis is provided to show the characteristics of our method and how it compares with different models in terms of the quality of results. The performance of these school districts is measured several times using different economical models to get the most suitable view of the situation.; The dissertation starts with the investigation of the parametric and non-parametric performance measurements along with advantages and shortcomings of these metrics. Then, a detailed analysis of outlier detection algorithms in data mining is provided. Finally, a method called the clustering-based DEA is developed.
机译:本文结合了信息技术的两个重要领域,即数据挖掘和数据包络分析(DEA),为度量决策单元(DMU)的性能提供了一种新的工具。 DEA是用于评估DMU相对效率的强大性能度量方法。此方法确定有效和无效的DMU,以获取有价值的信息,以进行进一步的改进,例如确定支出节省和分配服务的最佳合适方法,这最终将提高整个系统的生产率。 DEA中有两个典型的假设:(1)DEA假定所有DMU在操作上都是同质的,并且(2)DEA是确定性的,并且在存在异常值或异常观察值的情况下会导致效率评估不准确。 ;许多研究都涉及DEA模型,但是很少有研究集中在异构DMU,离群值检测和大型数据集的可伸缩性上。本文提出了一个综合模型。我们引入了一种新的基于约束的聚类方法,用于离群值的早期检测,以评估非均质DMU的性能得分。在此方法中,与评估中的DMU不同的DMU被标记为离群值,并从分析中排除。这项工作省去了预定义相异性参数或要排除的DMU数量所需的额外工作。我们方法的实验结果表明,在评估北达科他州学区的交通系统资金方面,有了很大的改进。提供了广泛的分析,以显示我们的方法的特征以及如何根据结果的质量与不同的模型进行比较。这些学区的性能是使用不同的经济模型多次评估的,以便获得最合适的情况视图。本文从对参数和非参数性能度量的研究以及这些度量的优缺点开始。然后,详细分析了数据挖掘中的离群值检测算法。最后,开发了一种称为基于聚类的DEA的方法。

著录项

  • 作者

    Majadat, Hassan Mohammad.;

  • 作者单位

    North Dakota State University.;

  • 授予单位 North Dakota State University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号