首页> 外文学位 >Assessment of the mechanical integrity of copper/low-k dielectric in a flip chip package.
【24h】

Assessment of the mechanical integrity of copper/low-k dielectric in a flip chip package.

机译:评估倒装芯片封装中铜/低k电介质的机械完整性。

获取原文
获取原文并翻译 | 示例

摘要

Miniaturization and more recently convergence have been driving the industry since the invention of the transistor and integrated circuit (IC). Though the gate delay has decreased with transistor scaling, the increase in the resistive capacitive (RC) interconnect delay due to shrinking interconnect dimensions has become a serious concern for the development of future-generation electronics. To reduce the delay due to resistance R, a major technology change was the replacement of Aluminum (Al) with Copper (Cu) interconnect layers in the BEoL (Back-end-of-line). Recently, some investigators have suggested using low-k dielectric (having dielectric constant less than 4) instead of SiO2 (k= 3.9) to reduce the capacitive component in the RC delay. Low-k dielectric materials have characteristics such as low mechanical strength, hardness and adhesion, thereby making it imperative to characterize their thermo-mechanical response. Integration of Cu/low-k interconnects has become a critical reliability issue from the foundry's standpoint as well as package reliability. The thermo-mechanical stresses are induced inside the chip during various fabrication processes, field use, etc. The CTE mismatch between the various components leads to significant warpage and stresses in the metal/dielectric region of the die. Very little work in this area has been done for metal/dielectric stability. In this study, a 3-D multi-level finite element (MLFE) approach has been used to examine the mechanical integrity of the Nano-scale inter-layer-dielectric (ILD) when the package is subjected to thermal shock. Since thickness of each layer in the metal/dielectric region is few orders of magnitude lower than that of the chip/substrate (at least 3 orders) it is almost impossible to analyze it at the global level. Therefore, sub-modeling technique has been leveraged to conduct a relatively accurate estimation of the mechanical behavior of the Cu/low-k region under thermal shock condition. A comparative analysis of the mechanical response of the Cu/low-k region is done for 2 cases – 1) ILD taken as linear material (commonly used industry practice to save computational time) 2) temperature dependent non-linearity of the ILD is implemented and creep and plastic response is captured. The creep model was implemented to represent its realistic mechanical behavior. This study demonstrates the variation in the thermo-mechanical response between the 2 cases thereby addressing the importance of a non-linear analysis for such systems. The developed framework is further utilized to perform a parametric analysis for the number of BEoL layers and to study the effect of underfill properties on the structural integrity of the dielectric layers. Further the model is parameterized to study the effect of the die thickness and the number of interconnect layers in a flip chip package.
机译:自从晶体管和集成电路(IC)发明以来,小型化和最近的融合一直在推动行业发展。尽管栅极延迟随着晶体管的缩放而减小,但由于互连尺寸的缩小而导致的电阻电容(RC)互连延迟的增加已成为下一代电子产品发展的严重问题。为了减少由于电阻R引起的延迟,一项主要技术更改是在BEoL(后端)中用铜(Cu)互连层替换铝(Al)。最近,一些研究人员建议使用低k电介质(介电常数小于4)代替SiO2(k = 3.9)来减少RC延迟中的电容分量。低k介电材料具有诸如低机械强度,硬度和附着力的特性,因此必须表征其热机械响应。从铸造厂的角度以及封装的可靠性来看,铜/低k互连的集成已成为关键的可靠性问题。在各种制造过程,现场使用等过程中,芯片内部会产生热机械应力。各种组件之间的CTE不匹配会导致明显的翘曲和管芯金属/介电区的应力。在金属/介电稳定性方面,该领域的工作很少。在这项研究中,当包装受到热冲击时,使用了3-D多级有限元(MLFE)方法来检查纳米级层间电介质(ILD)的机械完整性。由于金属/电介质区域中每一层的厚度都比芯片/基板的厚度低至少几个数量级(至少3个数量级),因此几乎不可能在全局层面上对其进行分析。因此,已经利用子建模技术对热冲击条件下的Cu / low-k区域的机械行为进行了相对准确的估计。在2种情况下对Cu / low-k区域的机械响应进行了比较分析– 1)以ILD作为线性材料(通常采用行业惯例以节省计算时间)2)实现了与温度有关的ILD非线性并捕获蠕变和塑性响应。实施蠕变模型以表示其实际的机械行为。这项研究证明了这两种情况之间热机械响应的变化,从而解决了此类系统进行非线性分析的重要性。所开发的框架还用于对BEoL层的数量进行参数分析,并研究底部填充性能对介电层结构完整性的影响。进一步将模型参数化,以研究芯片厚度和倒装芯片封装中互连层数的影响。

著录项

  • 作者

    Raman, Thiagarajan.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering General.;Engineering Mechanical.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2012
  • 页码 70 p.
  • 总页数 70
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号