This work is a simulation of the Accretion-Induced Collapse of a 1.37 solar mass white dwarf into a neutron star and the subsequent generation of a neutrino-driven wind, with an examination as to whether the event is a candidate for r-process nucleosynthesis. The simulation utilizes a new radiation hydrodynamic code, RadHyd, to model the AIC event.; We examine the process of Accretion-Induced Collapse utilizing two sets of neutrino-scattering and absorption rates: The first, and simpler of the two has been in use since they were first introduced in 1985. The second includes a more accurate implementation of neutrino-nucleon scattering and nucleon bremsstrahlung. The improved nue - nue-nucleon scattering rate now permits energy to be exchanged between neutrinos and matter by this process, and is therefore important for the numu's and nutau's, as their only channels for exchanging energy in the standard rates was by the relatively weak NES and pair processes. Neutrino-nucleon bremmsstrahlung is also important for numu's and nutau's as this opens another channel (beside pair process) for their production.; Both simulations show a neutrino-driven wind being generated after core bounce and shock propagation. We examine the conditions in these winds to ascertain whether the requisite conditions are attained for an r-process. In neither case are these achieved during the time of the simulations (i.e. 2 seconds). However, these simulations need to be carried out at least an order of magnitude longer before firm conclusions can be drawn about the applicability of this site for the r-process.
展开▼