首页> 外文学位 >Altered Type 1 Ryanodine Receptor Activity and Functional Rescue In a Mouse Model of Central Core Disease.
【24h】

Altered Type 1 Ryanodine Receptor Activity and Functional Rescue In a Mouse Model of Central Core Disease.

机译:1型Ryanodine受体活性和中枢核心疾病小鼠模型中的功能抢救改变。

获取原文
获取原文并翻译 | 示例

摘要

In the human population, two RyR1 mutations, I4898T (IT) and Y522S (YS), result in CCD and MH with cores, respectively. Providing a comprehensive comparison of the proposed pathogenic mechanisms in skeletal muscle of IT and YS knock-in mice is the central goal of this thesis.;Heterozygous IT (IT/+) and YS (YS/+) mice were crossed to generate compound heterozygous mice (YS/IT) in order to evaluate potential rescue of RyR1 activity due to functional RyR1 complementation. The foundation of this hypothesis is the opposing mechanistic defects for the IT and YS mutations (reduced Ca 2+ permeation vs increased Ca2+ leak, respectively). Results from compound heterozygous YS/IT myotubes demonstrate a partial rescue of both electrically-evoked (21.4% rescue) and 4-CMC-induced (42.5% rescue) Ca2+ release compared to IT/IT myotubes. These results indicate that co-expression of YS and IT mutant monomers leads to functional complementation that partially rescues RyR1 Ca2+ release, SR Ca2+ content, and EC coupling. These results buttress the hypothesis that the two mutations act via fundamentally distinct mechanisms.;Alterations in RyR1 function, EC coupling, and Ca2+ homeostasis in skeletal muscle fibers from IT/+ mice was assessed to provide further insight into CCD pathogenesis. Adult (4-6 month old) IT/+ mice exhibited reduced performance compared to age-matched WT mice during in vivo hanging task and grip strength tests, consistent with significant skeletal muscle weakness. The peak magnitude and maximum rate of electrically-evoked (Magnitude (F/F 0) WT: 0.39 +/- 0.02; IT/+: 0.24 +/- 0.01 and Rate (d(F/F 0)/dt) WT: 0.17 +/- 0.01; IT/+: 0.11 +/- 0.01) and 4-CMC-induced (Magnitude (DeltaR) WT: 0.68 +/- 0.03; IT/+: 0.54 +/- 0.03 and Rate (dR/dt) WT: 0.39 +/- 0.05; IT/+: 0.18 +/- 0.03) Ca2+ release were significantly reduced in single intact FDB fibers from IT/+ mice in the absence of a detectable change in SR Ca2+ content. Together, these findings are consistent with the hypothesis that the IT mutation significantly reduces Ca2+ flux through the channel in muscle fibers from IT/+ mice.;The final area of research addressed herein is to provide proof-of-principle for mutant allele-specific gene silencing (ASGS) as a potential therapeutic strategy in autosomal dominantly-inherited RyR1 disorders. Using RT-PCR and confocal microscopy based assays, candidate IT- and YS-selective siRNAs were evaluated for efficacy and specificity. Local delivery of the most promising siRNAs into FDB muscles was achieved by injection/electroporation (1/week for 2-4 weeks) of footpads of 4-6 month old IT/+ and YS/+ mice. Results indicate that 2-4 weeks of treatment in IT/+ mice results in modest but significant functional rescue of the deficits in rate (38.5% rescue) and magnitude (78.6% rescue) of 4-CMC-induced Ca2+ release without a significant effect on electrically-evoked Ca2+ transients. More impressively, enhanced RyR1 sensitivity to activation by caffeine (EC50 164% rescued) and temperature-dependent increase in resting Ca2+ (fold increase 124% rescued) in YS/+ mice was significantly rescued to WT levels at the two and four week timepoints. As determined by RT-PCR, the degree of functional rescue in both the YS/+ and IT/+ mice correlates well with the relative shift of fractional allele expression from the same muscles.;Taken together, the work presented here supports the hypothesis that the IT mutation reduces RyR1 Ca2+ release in a manner that does not reduce SR Ca2+ content or increase channel sensitivity to activation. Results also confirm that the YS mutation operates by a mechanistically distinct pathway---sensitization to activation by voltage, caffeine, and temperature, as well as promoting RyR1 Ca2+ leak and SR Ca 2+ store depletion. Though the mechanisms of these mutations are distinct, the concept of ASGS is applicable to both the IT and YS mutations and results in significant in vivo functional rescue that depends strongly on mutant allele silencing efficiency. (Abstract shortened by UMI.)
机译:在人类中,两个RyR1突变I4898T(IT)和Y522S(YS)分别导致CCD和MH具有核心。本研究的主要目的是对IT和YS敲入小鼠骨骼肌的致病机制进行全面比较。;杂合子IT(IT / +)和YS(YS / +)小鼠杂交产生复合杂合子小鼠(YS / IT),以评估由于功能性RyR1互补引起的RyR1活性的潜在拯救。该假设的基础是IT和YS突变的相对机制缺陷(分别减少了Ca 2+渗透与增加的Ca2 +渗漏)。复合杂合YS / IT肌管的结果表明,与IT / IT肌管相比,电诱发的(21.4%的挽救)和4-CMC诱导的(42.5%的挽救)Ca2 +释放均得到部分挽救。这些结果表明,YS和IT突变体单体的共表达可导致功能互补,从而部分挽救RyR1 Ca2 +释放,SR Ca2 +含量和EC偶联。这些结果支持了两个突变通过根本不同的机制起作用的假设。评估了IT / +小鼠骨骼肌纤维中RyR1功能,EC偶联和Ca2 +稳态的改变,以进一步了解CCD的发病机理。在体内悬挂任务和抓地力测试中,成年(4-6个月大)IT / +小鼠与年龄匹配的WT小鼠相比,表现出降低的性能,这与明显的骨骼肌无力相一致。电诱发的峰值幅度和最大速率(幅度(F / F 0)WT:0.39 +/- 0.02; IT / +:0.24 +/- 0.01和速率(d(F / F 0)/ dt)WT: 0.17 +/- 0.01; IT / +:0.11 +/- 0.01)和4-CMC感应(幅度(DeltaR)WT:0.68 +/- 0.03; IT / +:0.54 +/- 0.03和速率(dR / dt )WT:0.39 +/- 0.05; IT / +:0.18 +/- 0.03)在未检测到SR Ca2 +含量变化的情况下,来自IT / +小鼠的单个完整FDB纤维中的Ca2 +释放量显着降低。总之,这些发现与以下假设相吻合:IT突变显着降低了IT / +小鼠肌肉纤维通道中的Ca2 +通量。本文研究的最终研究领域是为突变等位基因特异性提供原理证明基因沉默(ASGS)作为常染色体显性遗传RyR1疾病的潜在治疗策略。使用RT-PCR和基于共聚焦显微镜的分析,评估了候选IT和YS选择性siRNA的功效和特异性。通过对4-6个月大的IT / +和YS / +小鼠的脚垫进行注射/电穿孔(1 /周,持续2-4周),将最有希望的siRNA局部递送到FDB肌肉中。结果表明,在IT / +小鼠中进行2-4周的治疗后,4-CMC诱导的Ca2 +释放速率(38.5%的恢复)和幅度(78.6%的恢复)的缺陷程度适度但显着,但没有明显的作用。在电诱发的Ca2 +瞬变中。更令人印象深刻的是,在两个星期和四个星期的时间点上,YS / +小鼠中增强的RyR1对咖啡因激活的敏感性(挽救了EC50 164%)和温度依赖性的静息Ca2 +增加(挽救了124%倍增加)被显着挽救至WT水平。根据RT-PCR的测定,YS / +和IT / +小鼠的功能恢复程度与来自同一肌肉的等位基因部分分数表达的相对变化密切相关。总而言之,此处提出的工作支持以下假设: IT突变以不降低SR Ca2 +含量或不增加通道对激活的敏感性的方式降低RyR1 Ca2 +的释放。结果还证实,YS突变是通过机制上不同的途径起作用的,即对电压,咖啡因和温度激活的敏感性,以及促进RyR1 Ca2 +泄漏和SR Ca 2+存储耗尽。尽管这些突变的机制是不同的,但ASGS的概念适用于IT和YS突变,并导致体内功能的显着恢复,这在很大程度上取决于突变等位基因的沉默效率。 (摘要由UMI缩短。)

著录项

  • 作者

    Loy, Ryan Eric.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biology Genetics.;Health Sciences Pharmacology.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 275 p.
  • 总页数 275
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号